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AFIT/DS/ENG/96-03

Abstract

New methods for preprocessing wavefront sensor (WFS) slope measurements are pre-

sented. Methods are developed to improve the accuracy of WFS slope measurements, as

well as estimating key atmospheric and system parameters from the slope signals. Both

statistical and artificial neural network solutions are investigated. Also, new atmospheric

models for generating slope and phase data with the proper spatial and temporal statistics

are developed. The experiments in improving the accuracy of WFS slope measurements

include reducing the WFS slope measurement error and compensating for adaptive optics

system time delay through temporal slope prediction. The experiments in key parameter

estimation include estimating the Fried coherence length, r0 , the wind speed profile, the

strengths of the atmospheric turbulence layers, and the WFS mean square slope estimation

error. Results of the experiments are used to make generalized conclusions in several key

areas: first, the types of useful information that can be extracted from the WFS slope mea-

surements; second, a comparison of linear or non-linear methods; and third, the possibility

of methods that can be developed which operate over useful ranges of seeing conditions.

Overall, we find that the WFS slope measurements do contain useful information which

can be extracted through various techniques. Simple transformations (either by neural

network or statistical solution) on slope measurements can yield significant improvements

is system accuracy without major changes to the adaptive optics system. Also, we find

that both neural networks and statistical methods perform well when seeing conditions are

fixed, and that viable solutions can be developed that operate over broad ranges of seeing

conditions. While developed to operate under variable seeing conditions, these solutions

still provide significant performance in improving the accuracy of WFS slope measurements

and in estimating key atmospheric and system parameters. In general, neural networks are

much more robust when operating under variable seeing conditions than are the statistical

solutions.
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LINEAR AND NON-LINEAR PREPROCESSING

OF WAVEFRONT SENSOR SLOPE MEASUREMENTS

FOR IMPROVED ADAPTIVE OPTICS PERFORMANCE

I. Introduction

The resolution of ground based telescopes is limited by the random wavefront abber-

ations caused by atmospheric turbulence. Adaptive optics systems, which compensate for

atmospheric effects, have been shown to improve the resolution of these telescopes. The

purpose of an adaptive optics system is to remove the atmospheric induced aberrations

from an incident optical wavefront. This is accomplished by measuring the incident aber-

rations and removing them using a deformable mirror. Correction with a deformable mirror

must take into account the effects of additive noise in the wavefront sensor, system time

delays, and the possibility of a spatial separation between the object of interest and the

beacon used to measure the incident wavefront. The incident abberations are measured

with a wavefront sensor (WFS). A WFS, such as the Hartmann WFS, measures the local-

ized slopes of the wavefront within subapertures of the telescope aperture. The deformable

mirror then corrects for the measured abberations based on a controlling algorithm. A

controlling algorithm, or optimized reconstruction algorithm, translates WFS slope mea-

surements into servo control commands for the deformable mirror, while trying to minimize

the residual wavefront errors. However, there are several factors which limit the perfor-

mance of adaptive optics systems. This chapter introduces some of the limiting factors that

degrade adaptive optics performance as well as past solutions to adaptive optics problems.

Also, new solutions to adaptive optics problems investigated in this research are described,

along with the overall research goals and objectives.
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1.1 Limits on Adaptive Optics Performance

While adaptive optics have improved the performance of ground based telescopes,

there are several factors which limit the performance of adaptive optics systems. The ac-

curacy of the WFS is limited by camera read noise, shot noise, and the finite number of

sampling areas across the optics diameter. Also, the ability of the deformable mirror to

correct abberations is limited by the finite number of degrees of freedom within the de-

vice. Since the wavefront abberations evolve with time, the system time delay results in

further system error. Finally, an optimal wavefront reconstruction algorithm, such as the

minimum variance reconstructor, can be derived based on statistical knowledge of the atmo-

sphere, noise and other random effects in the adaptive optics system. However, the actual

performance of this reconstructor may be limited by imperfect knowledge of several key

parameters [25, 26, 27] associated with the atmosphere and system. The key atmospheric

parameters include the Fried coherence length, r0 [4], the strength of the atmospheric tur-

bulence layers, and the wind speed profile. A key adaptive optics system parameter is the

WFS mean square slope measurement error. One source of information which has not been

fully exploited to improve adaptive optics system performance is the statistical information

contained in the WFS slope measurements. Due to the correlations which exist in the slope

measurements, valuable information about these atmospheric and system parameters, the

WFS measurement error, and the temporal evolution of the atmosphere is contained within

them. The purpose of this research is to explore the possibilities for extracting information

about these parameters from the WFS slope measurements, and to examine methods of

effectively increasing WFS slope measurement accuracy. The ability to accurately estimate

key parameters for use in optimal wavefront reconstruction algorithms can result in optimal

wavefront correction and improved image quality. Also, the ability to improve the accuracy

of WFS slope measurements before sending them to a wavefront reconstruction algorithm

will result in improved system performance.
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1.2 Past Solutions

Past research has focused on improving adaptive optics performance by using sta-

tistical based methods. Due to the high correlations which exist in the WFS slope mea-

surements, this focus on statistics based methods makes sense. However, statistics based

methods for improving adaptive optics performance require knowledge of key parameters

to operate, and will not continue to operate in an optimal fashion under changing atmo-

spheric conditions (often called seeing conditions). Interest has been growing in applying

artificial neural networks to adaptive optics problems. Neural networks offer non-linear so-

lutions to problems with the possibility of operating over a wide range of seeing conditions.

While a comprehensive discussion of neural networks can be found in reference [15], a short,

qualitative discussion of the neural networks used in this research follows. Artificial neural

networks were developed to imitate the responses of biological neurons. A common model of

a neuron is the perceptron. A perceptron consists of several input nodes fully connected to

an associative node. The perceptron is able to learn by adjusting the weighted connections

so that a given input produces a desired response [15, 19]. The type of neural network used

throughout this research is the multilayer perceptron network. A multilayer perceptron is

composed of layers of perceptrons. Given enough nodes and training data, a multilayer

perceptron network is capable of approximating any continuous, nonlinear function [15].

The networks used in this research consist of an input layer, a nonlinear hyperbolic tangent

hidden layer, and linear summation output layer. The neural nets are trained using stan-

dard backpropagation techniques [14]. Training a neural network consists of propagating

a large number of data vectors through the network one at a time. The output of the

network is then compared to a desired output and the error is used to adjust the weighting

of the connections between layers. The entire set of training data is repeatedly propagated

through the network until the network converges on a solution which minimizes the total

error over the entire training data set. Once the network has converged on a solution, the

weights are fixed and the network is tested with an independent set of data vectors. When

3



results are mentioned in this paper, they reflect the performance of a neural network on

the test data and not the training data.

Very little work has been done in the area of applications of neural networks to

adaptive optics systems. Previous work has been performed in the area of using neural

networks to replace the function of traditional wavefront sensors (such as the Hartmann

wavefront sensor) [2, 11, 12, 30]. Specifically, this previous work dealt with using an in and

out of focus image of a guide star as the input vectors to a neural network. The network was

then trained to provide estimates of the low order Zernike components of the wavefront. The

results obtained from these networks were comparable to those obtained using a traditional

wavefront sensor. Recently, work has been reported which used neural networks to predict

future wavefront measurements [6, 7, 8, 9]. This work began by predicting overall wavefront

piston and tilt, but eventually evolved to predicting the x-components of the slope for the

individual wavefront elements. While good performance was achieved, the network had to

be trained for a specific set of conditions. Therefore, if conditions changed, a new set of

network weights would be required. Past research efforts in adaptive optics have shown that

improvements in performance can be reached. The question left unanswered is if solutions

can be found which will operate when the seeing conditions are changing.

1.3 Improving WFS Slope Measurement Accuracy

A large source of error in today's adaptive optics system lies in the accuracy of the

WFS slope measurements. If the WFS slope measurements do not accurately represent

the true subaperture slopes at the time of wavefront correction a performance degradation

occurs. There are two major sources of inaccuracy in the WFS slope measurements. They

are the WFS slope measurement error, and the system time delay. This section outlines

approaches for improving the accuracy of the WFS slope measurements in each of these

areas.
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1.3.1 WFS Slope Measurement Error. Reduction of the WFS slope measurement

error is one area of particular interest to users of adaptive optics systems. The error

introduced into the wavefront measurements by the wavefront sensor is random. This

error arises from such sources as charge-coupled device (CCD) read noise and shot noise.

Since the goal of adaptive optics is to correct for the atmospheric abberations as measured

by a WFS, reducing the WFS measurement error would be of great benefit to adaptive

optics system performance. Methods of reducing WFS measurement error investigated in

this research include processing of the entire set of WFS slope measurements at once, and

improving the measurement accuracy within a single WFS subaperture by processing the

raw detected optical signal.

1.3.1.1 Processing an Entire Set of WFS Slope Measurements. In the case

of processing a single frame of WFS slope measurements, if one can learn the current

statistics of the slope signals and additive noise either through mathematical calculations

or by training a neural network, then the information could be used to reduce noise effects.

It can be shown that with knowledge of the wavefront slope signal statistics, a simple

linear transformation of WFS measurements can reduce the variance of the error [20].

The WFS measurement error can be viewed as noise, with the true slope value being

the signal. In the case where the signal and noise are independent and both follow normal

distributions (assumptions commonly made in adaptive optics) [24], a linear transformation

can be produced which yields the Bayes optimal estimate of the signal based on a noisy, or

erroneous measurement. If the measured signal is viewed as a vector X of measurements,

where

x = gi (1)

and 8 is the true slope measurements and n is the measurement error, then our estimate

of the error free slope measurements, 8, is

g=PV. (2)
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The matrix P is the Bayes optimal error reducer, a linear transformation where

P = R,[R8 ± + R]-' (3)

and R8 is the signal covariance matrix and R, is the noise covariance matrix.

Except for the case where no error is present, a linear transformation via the matrix

P is guaranteed to reduce the variance of the measurement error in the slope measurement.

In the case of no noise, the matrix P becomes the identity matrix and no change to the

measured signal occurs. This Bayes optimal linear transformation represents the best mean

square slope estimation error reduction possible given the assumptions on the distributions

of the data. However, implementing such a transformation may not always be possible.

Prior knowledge of the signal and noise covariances is required to produce the matrix P.

In real world applications, conditions, and thus the covariances, are continually changing.

Therefore, knowing which values of signal and noise covariance to use at any given time

is problematic. Neural networks, which can be trained to operate over a wide range of

conditions, offer the possibility of taking advantage of the covariances and correlations

between wavefront measurements to implement a mean square slope measurement error

reduction scheme. While the best performance that a neural network can be hoped to

achieve is equal the optimal statistics based solution, a network should be able to perform

error reduction without the need to know the current statistics of the signal and noise.

Previous research has shown that neural networks can be used to reduce the noise in

measured signals [21, 31]. Again, since the WFS measurement error can be modeled as

noise, noise reduction techniques should apply to reducing the WFS slope estimation error.

1.3.1.2 Reducing Error Within a Single Subaperture. In the case of im-

proving measurement accuracy within a single WFS subaperture, we must understand the

source of the errors better. In a Hartmann WFS, one of the most common WFSs in use

with adaptive optics, a point source is imaged through subapertures of the telescope aper-

ture onto detector arrays. The location of the centroid of the image formed on the detector
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array is directly related to the localized slope of the incident wavefront within the given

subaperture. The main source of error in the Hartmann sensor is that the main lobe of

the irradiance pattern produced on the detector array may be smaller than the physical

dimensions of the detector array elements. When the main lobe of the image is smaller

than a single detector array element, one of two results may occur. When the main lobe

falls on several detectors as in Point A of Fig. 1, then centroid estimation can be very ac-

curate. However, as the main lobe of the image moves across a single detector as in Point

B of Fig. 1, it is quite obvious which detector contains the image centroid, but exactly

where it lies within the individual detector is not certain. Because the energy falling on the

detectors other than the one containing the centroid is very small, the read and shot noise

in these detectors corrupt the detected signal, making it difficult to use the energy outside

the main lobe to pinpoint the centroid location. Thus, as the image centroid moves across

a single detector, it is very hard to estimate its exact location. The other source of error

is the presence of read and shot noise in the detectors. These random effects distort the

detected image and thus can effect the estimated centroid location. Overall, errors in the

slope measurements result in imperfect wavefront compensation by the deformable mirror.

Many adaptive optics systems use a quad-cell, or a 2 x 2 array of detectors for centroid

estimation within a subaperture. However, there has been a move to use larger arrays of

detectors per subaperture for one of two reasons. One reason is to improve the dynamic

range of slope estimation, the other is to improve the resolution in centroid estimation. In

either case, the increase in detector array size makes the effects of read noise more signif-

icant. In this research we choose to investigate estimating the centroid location within a

WFS subaperture for 4 x 4 detector arrays. Both read noise and shot noise are factored

into data generation. A standard centroid estimation algorithm exists, but as the number

of detectors increases, the slope measurements errors due to noise effects increase. Because

neural networks can be trained with noisy data, and thus learn to operate well in noisy con-

ditions, they make excellent candidates for improving centroid location estimation within

7
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Detector Array

Figure 1. Lenslet image on detector array when image main lobe is smaller than a single
detector.

a Hartmann WFS subaperture. Therefore, in this research artificial neural networks are

trained to take as input the detected signal from each detector within a subaperture and

estimate both the x and y centroid locations. The results obtained using the neural net-

works are then compared to a standard centroid estimation algorithm for noise free data,

as well as with data which take into account both read and shot noise. In the tests which

take into account noise effects, noise conditions consistent with both natural guide stars

and artificial beacons are considered. Tests are conducted on lenslets where the main lobe

of the speckle image is both a full, and half of a detector pixel's width.

1.3.2 System Time Delay. Another source of wavefront reconstruction error

which is of interest is the system time delay. While it would be impossible to build an

adaptive optical system without delay, it may be possible to predict the wavefront at the

time of wavefront compensation based on past measured slopes. A statistical technique

exists for slope prediction which relies on knowledge of the key atmospheric and system

parameters. This technique is based on knowing the covariance of the measured WFS data.

Artificial neural networks, which do not require knowledge of the key parameters or the

8



covariance statistics of the data, are compared to the statistical techniques. When seeing

conditions are set, and thus the statistics of the slope measurements are fixed, a simple

linear transformation can be used to perform prediction [10]. If we were to predict slope

measurements at the time of wavefront compensation based on the previous two frames of

measured slopes, then this linear transformation becomes

x [A, A2] xt-1 1(4)

Xt-2I

where xt is the vector of estimated slopes at time t, and xt-1 and Xt-2 are two previous vector

frames of noisy slope measurements. The matrices A1 and A 2 are found by solving [10]

Rxx(O) Rxx(-1) A T  R x(1) 1
Rxx(1) R~x(0) A2 [ Rxx(2) (5)

where Rxx(t) is the covariance matrix between two measurement frames separated by time

i.

This linear transformation is Bayes optimized in the mean square sense for data

governed by Gaussian point statistics, and thus represents the best prediction possible

for WFS slope data when the statistics of the signal are known. However, implementing

such a transformation may not always be possible. Prior knowledge of the signal and noise

covariances are required to produce the matrix Rxx (t). In real world applications, conditions

are continually changing and thus these covariances are continually changing. Therefore,

knowing which values of signal and noise covariance to use at any given time is a difficult

task. Neural networks, which can be trained to operate over a wide range of conditions, offer

the possibility of taking advantage of the covariances and correlations between wavefront

measurements to implement a prediction scheme. While the best performance that a neural

network can obtain is to equal the Bayes optimal solution given above, a network should

be able to perform prediction without the need to know the current statistics of the signal
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and noise. Also, because anisoplanatism, or a spatial separation between the beacon and

the object of interest, can be modeled as a temporal prediction problem where the wind

speeds are fixed [18], any results obtained from the tests in prediction will apply to the

problem of anisoplanatism.

1.4 Key Parameter Estimation

Parameter estimation is another application investigated in this research. Neural net-

works and statistical methods may be able to predict key atmospheric parameters such as

the Fried coherence length, r0 , the relative strengths of the atmospheric layers, and the wind

speed profile, as well as key system parameters such as the WFS mean square measure-

ment error. Knowledge of the current state of these parameters would enable better wave

front reconstruction using statistical based optimal reconstructors. Because the covariance

properties of the WFS slope measurements are directly related to these key parameters,

a neural network or statistical method may be able to operate on slope measurements to

estimate the current value of these parameters. Statistics based wavefront reconstruction

algorithms, such as the minimum variance reconstructor, compensate for system time de-

lay, reduce wavefront sensor measurement error, and compensate for separation between a

guide star and the object of interest. These techniques are optimized to reduce the vari-

ance of the residual phase errors after correcting an abberated wavefront with a deformable

mirror [3, 24, 25, 26, 27]. These statistics based reconstruction algorithms have also been

shown to produce better wavefront reconstruction than least squares techniques [17]. How-

ever, the "optimality" of these algorithms is heavily dependent on knowing the current

state of such parameters as r0 , the relative strengths of the atmospheric layers, the wind

speed profile, and the WFS measurement error. The problem is in maintaining a good es-

timate of these parameters as the atmosphere evolves over time. This research investigates

using neural networks and statistical methods to estimate these key parameters in order to

improve the "optimality" of statistics based reconstruction algorithms.
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1.5 Research Goals and Overview

While improving the accuracy of WFS slope measurements and key parameter esti-

mation are both key issues in the adaptive optics community, processing of the WFS slope

measurements to perform these tasks has not been previously investigated. Because the

key parameters of r0 , the atmospheric layer strengths measured as the fraction of all tur-

bulence in each atmospheric layer, the wind speed profile, and the WFS mean square slope

estimation error all contribute to the statistics of the measured atmospheric abberations,

it may be possible to estimate them from the WFS slope measurements. Also, due to the

high degree of both spatial and temporal correlation within the slope measurements, direct

processing of the slope measurements should yield better estimates of the true slopes at the

time of wavefront compensation. The ability to have real-time estimates of key parameters

along with improving the WFS estimated slope signal accuracy are crucial to improving

adaptive optics performance. Therefore, individual experiments in key parameter estima-

tion and improving the accuracy of WFS slope measurements make up the heart of this

research. However, the main focus of this research is to make broad conclusions from the

individual experiments on the following key issues:

1. What kinds of useful information can be extracted from the WFS slope measure-

ments?

2. Which methods work best (linear/statistical methods or non-linear methods/artificial

neural networks)?

3. Can methods be developed which operate over useful ranges of seeing conditions?

The first issue deals with what can we reasonably expect to extract from the WFS

slope measurements. As was stated earlier, many factors effect the statistics which ul-

timately govern the atmospheric abberations and the limits on adaptive optics system

performance. To understand what information can be gained by preprocessing WFS slope

measurements, we investigate whether the following tasks can be accomplished:

e improving the WFS estimated slope signal
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- reduction of the WFS mean square slope estimation error

- slope prediction to compensate for system time delay

e key parameter estimation

- estimation of the parameter r 0

- estimation of the relative strengths of the atmospheric layers

- estimation of the atmospheric wind speed profile

- estimation of the WFS mean square slope measurement error

The second issue deals with choosing the proper method for extracting information

from WFS slope measurements. This research compares the performance of linear (statistics

based) methods with non-linear methods (artificial neural networks). We must understand

the benefits and limitations of neural networks as compared to statistics based methods.

This research applies both linear and non-linear methods to each of the tasks listed above.

The results of each are compared to understand several issues. The first is the ability of a

neural network to approximate the optimal statistical solution when seeing conditions are

fixed. Many of the statistical methods available for performing the tests require knowledge

of the key parameters not being estimated. Perfect knowledge of these other parameters

results in an optimized statistical solution to the problem. While it has been shown in

theory that neural networks should approximate these optimized solutions [28], it has not

been shown in practice that neural networks will approximate optimized statistical solutions

to continuous function estimation processes. While comparisons of neural networks to

optimized solutions sheds some light on the upper limit of performance, rarely in the

real world do seeing conditions remain fixed. Therefore, experiments are also conducted

with variable seeing conditions. The performance of neural networks is then compared to

statistical solutions which have been fixed to some specific values of the key parameters

which govern them. In the area of parameter estimation, the statistical estimators are

optimized for averaging the estimate over many frames of slope measurements. Therefore,

comparisons are made as to how many estimates must be averaged for both the neural
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network and the statistical methods to achieve small errors. Finally, we must understand

the effects of removing the global tilt across the aperture on both the statistical methods

and the neural networks. Removing global tilt reduces the variance of the slope signals,

and thus reduces the required dynamic range of the corrective optics. This reduction has

the effect of making the individual slope measurements more independent of each other.

While removing global tilt simplifies the adaptive optics system, we must understand what

impact it has on the information contained in the WFS slope measurements. Therefore,

tests are conducted on data with and without global tilt.

The final issue deals with developing flexible solutions to improving adaptive optics

performance. When seeing conditions are fixed, highly accurate parameter estimation,

noise reduction, and prediction can be accomplished through statistics based solutions.

However, seeing conditions rarely remain fixed for any significant period of time. Therefore,

any viable solution must be able to operate over a useful range of seeing conditions. Tests

are conducted to determine not only how well the neural networks and statistical solutions

perform under fixed conditions, but also how well a single, set neural network or statistical

solution performs when the data is drawn from a variable range of seeing conditions.

Overall, we find that the WFS slope measurements do contain useful information that

can be extracted through various techniques. From reducing WFS measurement error, to

temporal slope prediction, to parameter estimation, significant performance increases can

be realized either directly through processing of the WFS slope measurements, or by using

parameter estimates from the WFS slope measurements to increase the performance of

wavefront reconstruction algorithms. Also, we find that both neural networks and statis-

tical methods perform well when seeing conditions are fixed, however neural networks are

much more robust when operating under variable seeing conditions than are the statistical

solutions. Finally, we find that viable solutions can be developed which operate over broad

ranges of seeing conditions.
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1.6 Dissertation Organization

This dissertation is organized to first establish the foundation for the work, then

provide the results of that work. Because all the data used for training and testing artificial

neural networks are computer generated, Chapter II provides a detailed description of how

the data are generated. Chapters III and IV discuss the tests and results in the areas

of improving the accuracy of WFS slope measurements, and key parameter estimation

respectively. Finally, Chapter V provides the overall conclusions.
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II. Data Generation

Before the tests mentioned in Chapter I can be conducted, a means of generating ran-

dom data with the proper spatial and temporal statistics is required. Large sets of random

data must be generated to train neural networks. Other data, independent of that used to

train the networks, must also be generated to test the networks and the statistical models.

These data must be governed by the proper spatial and temporal statistics. However, no

model existed before this research for generating either slope or phase data with the proper

spatial and temporal statistics. Therefore, the first step of this research is to develop the

necessary models. If we can calculate the covariances between all of the data, then we can

generate random draws of those measurements [16]. Therefore, expressions for the slope

and phase covariances are developed. These expressions are based on turbulence statistics

having a Kolmogorov power spectrum and the assumption that the atmosphere can be

modeled as N independent turbulent layers, each with its own r0 and wind speed velocity.

For this research, an atmosphere with four independent layers based on the Submarine

Laser Communication night (SLC-N) profile is used [13, 22].

2.1 WFS Slope Measurement Data Generation

Tests in prediction, parameter estimation, and WFS measurement error reduction

through processing of a single frame of WFS slope measurements, require random slope

values with the proper spatial and temporal statistics. Starting with an equation developed

by Ellerbroek [3], the following expression for the covariance, C,, between any two zero

mean, normally distributed slope measurements si(t1 ) and sj(t 2 ) at times ti and t 2 can be

written (see derivation in Appendix A):
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C 8(si(tl),Sj(t2)) = E[si(tl)sj(t2)]
N

ro k=1

S ddd w!(f)w () I xi -i - (t 1 - t 2 )f(zk) .

(6)

The parameter D is the side length of the square system aperture (see Fig. 2), r0 is the

Fried coherence length, f(zk) is the fraction of overall turbulence in layer k at altitude Zk,

v(zk) is the wind velocity of layer k, and w (:) designates the gradient of the ith WFS

subaperture weighting function which has different forms for x and y slope measurements.

For square subapertures we have for an x slope measurement,

w (: ) = w (XY) - n1L r e c t  L X ' Y 6nX xi - 6-(x -xi + ) (7)

and for a y slope measurement,

w~~ ~(~) L r c( L ,YLy ) ((y-y --- )-6(y-y +± )) ,(8)

1 - xi -i y -Y
wi( V) = wI(X, y) =- Lrect , ( , 8

where Lx and Ly are the x and y dimensions of the subaperture and (xi, Yi) is the center

location of the ith subaperture (see Fig. 2).

After using Eqn. (6) to compute the covariance matrix for an array of WFS subaper-

tures, a method is developed for generating random draws of the slopes [16]. The slope

covariance matrix calculated, C, is guaranteed to be symmetric, real, and positive definite,

and therefore can be Cholesky factored into the product of two matrices such that:

C, = RRT. (9)
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Figure 2. WFS subaperture geometry. Numbering depicts placement of each of the 50
slope measurements in the 50 element slope vector.

In order to generate series of random slopes with the proper space and time correlation

properties, a zero mean, unit variance, white Gaussian random vector, a is generated.

These properties imply E[aaT] = I where a' is the transpose of the vector a, and I is the

identity matrix. The vector a is then multiplied by the matrix R. The resulting vector,

Ra, represents the random slopes within each subaperture in space and time and exhibits

the correct covariance as shown previously in reference [16]. For this research, the random

slopes are generated for a 5 x 5 array of subapertures, each with an x and y slope. Therefore,

each realization of the slopes consists of 50 numbers (25 x slopes and 25 y slopes). Figure 2

depicts the geometry of the subapertures within the overall aperture.

Tests in parameter estimation and WFS measurement error reduction through pro-

cessing a frame of WFS slope measurements require only individual frames of slope mea-

surements. Therefore, the wind speeds of the atmospheric layers do not impact the data.

However, before generating prediction data which is based on temporal sequences of data,

we must set a limit on the maximum wind speed each layer may have in both the x and

y directions. In an adaptive optics system which does not employ predictive techniques
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(that is correction after the system time delay is based solely on the past measured slope

values), wind speed conditions are limited by the correlation between a slope at the time of

measurement and that same slope at the time of correction. Statistically, this implies that

adaptive optics only improve image quality when the mean square difference of the current

true slope measurement and the past noisy slope measurement is less than the mean square

variation of the current true slope measurement:

E{(st - st_,)2} < E {s}, (10)

where st represents the true slope at the time of wavefront correction and st-, is the past

measured slope. Simplifying Eqn. (10) into the form of a correlation coefficient yields

Estst,} >- (11)
-"-E {~st E }- 2

Because st and st-, are both proportional to D (see Eqn. (6)), the left-hand side of Eqn. (11)

is independent of 2. However, it does depend on the number of subapertures in ther0

wavefront sensor, the mean square slope estimation error of the subapertures, and on the

magnitude of the wind speed profile. For this research, when we use a 5 x 5 array of

subapertures, global tilt removed data, and a worst case slope measurement error of 25%

of the slope variance, it is empirically determined that Eqn. (11) is satisfied when the

maximum velocity each layer can have is O.1D per frame. That is if all four layers have

both x and y velocities exceeding O.1D per frame, then the system time delay would be

sufficiently large that correction using adaptive optics would hurt performance rather than

improve it. Therefore, for this research, wind speeds are limited to a maximum of 0.1D

per frame. This allows comparison of the prediction techniques to the performance of an

adaptive optics system which does not implement predictive techniques.
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2.2 Phase Screen Data Generation

Tests in reducing the WFS slope measurement error within a single WFS subaper-

ture require phase screen data with the proper spatial statistics. Starting with an equation

developed by Ellerbroek [3], the following expression for the covariance, Cp, between the

phase at any two locations within the subaperture, x- and X-, assuming the phase measure-

ments are zero mean and normally distributed, can be written (see derivation in Appendix

B):

= E (12)

(13)

where q$(E ) is the phase at location x , L is the dimension of the lenslet aperture, r0 is the

Fried coherence length, and W( ) is the lenslet aperture function with values of 1 inside

the aperture and 0 outside the aperture. Equation (13) can be easily solved for any two

points using Gegenbauer polynomials [23] (see Appendix C).

After using Eqn. (13) to compute the phase covariance matrix for an array of points

within a subaperture, the method for generating random draws of the slopes [16] is again

used for phases. Because the phase covariance matrix, Cp,, is guaranteed to be symmetric,

real, and positive definite, we can Cholesky factor it into the product of two matrices such

that:
= RRT. (14)

In order to generate random phases screens with the proper spatial correlation properties, a

zero mean, unit variance, white Gaussian random vector, C is generated. These properties

imply E[ o] -- I where I is the identity matrix. The vector a is then multiplied by the

matrix R. The resulting vector, R&, represents the random phases within the subaperture
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and exhibits the correct covariance. For this research, the random phases are generated for

a 41 x 41 array of points.

Once the phase screens are generated, the image of a point source within the WFS

subaperture is simulated and superimposed on a 4 x 4 detector array. In order to model

read and shot noise under realistic conditions, an expression is developed for the signal

to noise ratio (SNR) at the detector array. The expression for the SNR (as derived in

Appendix D) is

SNR= K (15)
0O.0346K +T257u-e

when the main lobe of the image is half the width of a detector, and

SNR = K (16)
0O.0378K +T25o,

when the main lobe of the image is the full width of a detector. In these expressions,

K is the average count detected per measurement per subaperture, and o' is the root

mean square read noise count of a single detector element. While this expression does not

represent a SNR in the traditional sense, it is widely used in the adaptive optics community.

With this expression in mind, appropriate ranges of SNR must be determined to represent

both natural guide stars and artificial beacons. We find that a typical natural guide star

provides a SNR between 4.0 and 7.5 (low SNR case), while a typical artificial beacon

provides a SNR between 7.5 and 11.0 (high SNR case). These SNR ranges are based on

ae = 12 electrons and K = 100 photo events per lenslet for a natural guide star and 180

photo events per lenslet for an artificial beacon [1]. To keep this work independent of the

system specifications, a SNR is randomly chosen in the proper range for each simulated

image. The photo electron generation rate, K, is kept constant at 150 photo events per

lenslet, and the value of the read noise, a., is calculated using either Eqn. (15) or Eqn. (16).

Detector shot noise is modeled as a Poisson random variable with arrival rate dependent

on K, and detector read noise is modeled as an additive, independent, Gaussian random

variable with variance o2.
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To properly account for noise, the percent of the subaperture irradiance on each

detector pixel in the array is determined. This percentage of K is the assumed average

count detected for that pixel, and is used as the arrival rate for a Poisson number generator.

Then read noise with the appropriate variance is added to each detector pixel. Once noise

is accounted for, a signal count for each detector in the array is calculated for each data

image. The detector counts for each image are then normalized by the largest detector

value for that image. This makes the data independent of the value chosen for K, and thus

all neural network solutions derived are dependent only on the SNR of the data.

Once methods exist for generating random slope and phase screens with the proper

spatial and temporal statistics, the large sets of data to train and test artificial neural

networks and to test the statistical methods can be generated. With the ability to generate

both slope and phase screens, the data requirements of all the tests conducted in this

research are met.
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III. Improving the WFS Estimated Slope Signal

One key to improving the performance of adaptive optics systems is in improving

the WFS estimated slope signals. Improvements can be made in terms of reducing the

WFS mean square slope estimation error, predicting the slope measurements at the time

of correction with the deformable mirror, or compensating for anisoplanatic effects. The

ability to make these improvements on the raw slope measurements before feeding them

to the wavefront reconstruction algorithm would reduce the burden on the reconstruction

algorithm of performing many tasks at once. Improving the accuracy of the WFS slope

measurements should yield improved adaptive optics performance, while also allowing the

possibility of less complex reconstruction algorithms.

3.1 Reduction of WFS Slope Measurement Error

One key area to improving adaptive optics performance is the area of reducing the

WFS mean square slope measurement error. Again, since adaptive optics systems correct

wavefront phase variations based on the WFS slope measurements, the less error in es-

timating the slopes, the better the wave front reconstruction. This research investigates

two methods by which WFS slope measurement error can be reduced. The first involves

processing an entire frame of WFS slope measurements at once, and using the covariance

statistics of the slope measurements to reduce the measurement error. The second method

involves improving the measurement accuracy within an individual WFS subaperture.

3.1.1 Reduction of WFS Slope Measurement Error Through Slope Vector Processing.

The goal of this portion of the research is to take slope measurements with measurement

error, and try to reduce the WFS error level. As was stated earlier, and shown in Eqn. (3),

a Bayes optimal solution exists for measurement error reduction, but it requires knowledge

of the signal and error covariance matrices. We compare neural network performance

to the performance of this optimal solution. In order to understand the performance of
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both statistical and neural network solutions for WFS measurement error reduction, two

experiments are conducted. The first experiment deals with fixed conditions. That is, the

free parameters which ultimately define the statistics of the WFS measurements are not

allowed to vary. These parameters are D/ro and the slope measurement error level. This

experiment shows how well a neural network can approximate the Bayes optimal solution.

However, in real applications, these parameters are continually changing with time, and

their values at any instant in time are not known. Therefore, for either solution to be

viable, it must operate over a broad range of these parameters. In the second experiment,

these parameters are allowed to vary.

In the first experiment, two tests are conducted to determine how well a neural

network approaches the Bayes optimal solution for fixed conditions. These tests include

low and high measurement error cases. For both tests, a 5 x 5 array of subapertures is

used and random slopes are generated with D/ro = 1. With D/ro = 1, the variance

of the individual slope elements, as calculated in Eqn. (6), is 0.43rad 2/m 2. In the low

measurement error case, independent Gaussian noise with a variance of 0.043rad 2/m 2 is

added to each slope measurement, yielding a SNR of 10. For the high measurement error

case, noise with a variance of 1.00rad 2/m 2 is added, yielding a SNR less than 1/2. In both

cases, a neural network with 60 hidden layer nodes and 50 linear summation output nodes

is trained to perform measurement error reduction. The neural network is trained to take

a single, 50 element, WFS measurement as input, and estimate the true, 50 element WFS

slope vector as output. The Bayes optimal solution operates in the same manner. Vectors

of the WFS measurements are matrix multiplied with Eqn. (3) with the result being an

estimate of the true WFS data. For both methods, the MSE between the estimated and

true WFS data for each element of the slope vector is calculated over 10000 randomly

generated slope vectors using

2 1 10000

- 10000 (17)
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Figure 3. WFS slope measurement error reduction, low measurement error case (SNR
= 10.0). MSE, c?, plotted as a function of WFS slope index i (see Fig. 2).
Parameters fixed at D/ro = 1.0, yielding a signal variance of 0.43rad 2/m 2, and
noise variance set at 0.043rad2 /m 2 .

where ij3 is the estimate of the ith slope element of the jth slope vector, and vij is the

true value of the ith slope element of the jth slope vector. Figure 3 shows the results for

the low error level case, and Fig. 4 shows the results for the high error level case. The

graphs are plots of the MSE as a function of the index of the 50 WFS slopes (see Fig. 2).

Each graph shows the results of the neural network and the Bayes optimal solution on a

common test set. Also shown is the theoretical result for the Bayes estimator, had a test

set of infinite size been used. As can be seen by both graphs, the neural network is able to

closely approximate the Bayes optimal solution. It can also be seen in Fig. 3 and Fig. 4 that

the amount of error variance reduction is not constant across all 50 slopes. As expected,

the slopes with the greatest amount of error reduction correspond to the slopes from the

center subapertures in the 5 x 5 WFS array, while slopes with the least amount of error

reduction correspond to slopes from the edge and corner subapertures.

This first experiment shows that a neural network can approximate the Bayes solution

for error reduction when the atmospheric and error conditions are fixed. However, in order
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Figure 4. WFS slope measurement error reduction, high measurement error case (SNR
= 0.43). MSE, E?, plotted as a function of WFS slope index i (see Fig. 2).
Parameters fixed at D/ro = 1.0, yielding a signal variance of 0.43rad2/m 2, and
noise variance set at 1.00rad 2/m 2.

to understand the issue of flexibility, an experiment is conducted over a range of conditions.

For this test, a 5 x 5 array of subapertures is again used. D/ro is allowed to range between

5 and 10, or between 1 and 2 r0 's per subaperture. The additive measurement error level

is randomly selected in the range of 0-25%, yielding a SNR of 4 and greater. A single

neural network with 200 hidden nodes and a linear summation output layer of 50 nodes

is trained to operate over the entire range of the data. The network inputs are the 50

WFS measurements, and the output is again an estimate of the actual slopes. The results

achieved with the neural network are then compared to the true optimized Bayes solution

for each individual set of 50 WFS measurements, representing the optimum error reduction

possible for each individual set of 50 WFS slope measurements. For the comparison, sets of

test data are generated at D/ro values of 5.0, 7.5, and 10.0. Additive error is incremented

by 5% steps from 0% to 25%. Figure 5 shows the results of these tests. Each graph is for a

different D/ro value and plots the average MSE versus percent measurement error. MSE,

E2, is as defined in Eqn. (17), except the MSE is averaged over all 50 elements of each slope
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vector.

50

50 (18)
j=1

The lines on the graphs represent the results of the neural network and the optimized

Bayes solution. The Bayes solution is considered optimized because it is based on perfect

knowledge of D/ro and the noise level for each test frame. Also shown is the variance of

the original measurement error, or the amount of error that would be measured if neither

method of noise reduction is used. These tests show that the neural network is able to do

a significant amount of measurement error reduction over the entire range of error levels,

although the optimized Bayes solution does better. The advantage is that the neural

network does not require knowledge of the signal or measurement error statistics.

The question left unanswered is how dependent on D/ro and the measurement error

variance is the Bayes optimal solution. If the variance of the measurement error is defined

as a fraction of the signal variance, the Bayes optimal solution is not dependent on D/ro

(in this case, D/ro can be factored out of Eqn. (3)). Therefore, to test the flexibility of the

Bayes solution, a single Bayes solution based on a measurement error variance of 12.5%

(median value of the test data) is tested versus the neural network. We refer to this Bayes

solution as the "suboptimized" solution since it is based on a single error level (12.5%)

instead of the individual error levels of each frame. The results are shown in Fig. 6 for

the case of D/ro = 10.0. Since the results for the Bayes solution are independent of D/ro,

this graph is representative of the solution for the full range of D/ro. It should be noted

that the suboptimized Bayes solution produces a straight line result that is tangent to

the optimized solution curves shown in Fig. 5. The point of tangency coincides with the

error level for which the suboptimized Bayes solution is matched. The suboptimized Bayes

solution outperforms the neural network over the whole range of error variances. While this

means that the suboptimized Bayes solution is the better method of error reduction, it also

raises a new question regarding the use of neural networks in adaptive optics. Specifically,

if neural networks can estimate the WFS measurement error level as a percent of the

26



2 2
D/r0 = 5.0 as Slope Signal Variance = 6.4 red/n

1.i

1., Measurement Error Variance Level ,

a 1.A -

7 Neural Network
, JO.

0. 

Bayes Solution

0.; ' "

S 10o 1'5 2 o 2
Measurement Error Variance as Percent of Slope Signal Variance

(a)
2 2

D/r0 = 7.5 => Slope Signal Variance = 12.58 rad /m
35

Measurement Error Variance Level

2.5 -
%'J- ,"

2
a 1.5 ,- Neural Network

.5

- -- yBayes Solution

0.5-

0 a 10 15 20 25

Measurement Error Variance as Percent of Slope Signal Variance

(b) 22

D/rO = 10.0 =* Slope Signal Variance = 20.3 red/m

Measurement Error Variance Level -

W - . Neural Network
2

. -- -Bayes Solution

5 5 10 15 20 25

Measurement Error Variance as Percent of Slope Signal Variance

(c)

Figure 5. Comparison of neural network to Bayes optimal solution for WFS slope mea-
surement error reduction. Average WFS slope MSE plotted versus measurement
error variance for a) D/ro = 5.0, b) D/ro = 7.5, and c) D/ro = 10.0.
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Figure 6. Comparison of neural network, optimized Bayes solution, and suboptimized
Bayes solution (optimized for WFS slope measurement error 12.5%) for WFS
slope measurement error reduction. Average WFS slope MSE plotted versus
measurement error variance for D/ro = 10.0.

signal variance, then an optimized Bayes solution can be implemented. This question

is addressed in the next section. To further understand how the neural network solution

compares to the suboptimized Bayes solution over the entire range of D/ro see Fig. 7. Both

methods are tested on a common set of data for D/ro ranging over 5 to 10. The results

are shown for each individual element in the 50 elements slope vector. The upper line is

the average measurement error level for the whole range of D/ro values and error levels.

The other lines represent the MSE after error reduction using either the neural network

or the suboptimized Bayes solution (optimized for WFS slope measurement error level

equal to 12.5%). While the suboptimized Bayes solution outperforms the neural network

solution by a nearly constant factor, the neural network solution does match the shape

of the suboptimized Bayes solution (see Fig. 7) while approximating the amount of error

reduction.

To understand the effects of global tilt removal on measurement error reduction, a

neural network with 220 hidden nodes is trained to perform error reduction on global tilt
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Figure 7. Average WFS slope mean square error plotted as a function of the slope mea-
surement index (see Fig. 2) for D/ro ranging between 5 and 10, and the WFS
slope measurement error levels ranging between 0 and 25%. The three curves
represent the original WFS slope measurement error level, the slope measure-
ment error level after neural network processing, and the slope measurement
error level after processing with a suboptimized Bayes solution (optimized for
D/ro = 7.5 and WFS slope measurement error level 12.5%).

removed data with D/ro in a range of 5-10, and measurement error level in the range

of 0-25%. The performance of the network is then compared to both an optimized and

suboptimized Bayes solution. The suboptimized Bayes solution is again set for a measure-

ment error level of 12.5%. As stated before, removing global tilt from the data reduces the

variance of the individual slope measurements and makes them more independent. This

reduction in the relative magnitude of the off diagonal elements of the slope covariance

matrix can be seen in Fig. 8. Since error reduction, especially the Bayes solution, is de-

pendent on the relationships or covariances between measurements, we would expect the

amount of error reduction to be less for global tilt removed data than for data with global

tilt included. This decrease in the amount of relative error reduction can be seen in Fig. 9,

where the neural network is compared to the optimized Bayes solution. This same decrease

in the amount of relative error reduction can also be seen in Fig. 10, where the network
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Figure 8. Comparison of slope covariance with and without global tilt. Plotted as
C,(si, sj) versus j (see Fig. 2 and Eqn. (6)) where j indexes all 50 elements
of the slope vector. Slope covariance shown for D/ro = 1.0.

is compared to the suboptimized Bayes solution. As before, the neural network performs

well and approaches the suboptimized Bayes solution.

Overall, we find that both the neural network and the statistical solution for reducing

the WFS mean square slope measurement error perform well in both fixed seeing conditions,

and when seeing conditions are allowed to vary. However, as long as a reasonable estimate of

the system mean square slope measurement error exists, the statistical solution is the better

choice. Also, the removal of global tilt does reduce the amount of error reduction by both the

neural network and the statistical solution due to the data being more independent. Finally,

the fixed conditions tests show that a neural network can approximate the optimized Bayes

solution.

3.1.2 Reduction of WFS Slope Measurement Error Within a Single WFS Subaper-

ture. Another method for reducing WFS slope measurement error is to reduce the error

within a single WFS subaperture. As stated in Chapter I, two effects can reduce the accu-

racy of slope measurements within a WFS subaperture. These effects are noise, both read
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Figure 9. Comparison of neural network to Bayes optimal solution for WFS slope mea-
surement error reduction on global tilt removed data. Average WFS slope MSE
plotted versus measurement error variance for a) D/ro = 5.0, b) D/ro = 7.5,

and c) D/ro = 10.0.
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Figure 10. Average WFS slope mean square error plotted as a function of the slope mea-
surement index (see Fig. 2) on global tilt removed data for D/ro ranging be-
tween 5 and 10, and the WFS slope measurement error levels ranging between
0 and 25%. The three curves represent the original WFS slope measurement
error level, the slope measurement error level after neural network processing,
and the slope measurement error level after processing with a suboptimized
Bayes solution (optimized for D/ro = 7.5 and WFS slope measurement error
level 12.5%).

and shot noise, and the problem with having spot sizes smaller than the physical dimension

of an element in the detector array. Therefore, realistic WFS data are generated, and tests

are conducted to compare the performance of neural networks with the standard centroid

estimation technique to see if the slope measurement error can be reduced. Sets of training

images are generated for a 4 x 4 array of detectors with diffraction limited spot sizes of

one half and one full pixel width, and for which the SNR is low, high, and infinite. Tests

are conducted on the six cases shown in Table 1. In all cases phase screens of 41 x 41

points are used to simulate the wavefront phase perturbations in the WFS subaperture.

The true x and y centroid locations are randomly chosen from a range of ±0.5 within a

normalized aperture. For this research, the detector array is assumed to be of unit dimen-

sion and centered about the origin. Values for L/ro are randomly chosen between 0.5 and

3.0, representing 0.5 to 3.0 r0 's per subaperture. This makes any network solution capa-
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Table 1. Hartmann sensor subaperture centroid estimation test parameters: spot size and
subaperture SNR.

Case 1 2 3 1 4 5 1 6
Spot Width Full Pixel Full Pixel Full Pixel Half Pixel Half Pixel Half Pixel

SNR 00 High, 7.5-11.0 Low, 4.0-7.5 00 High, 7.5-11.0 Low, 4.0-7.5

ble of operating over a realistic range of atmospheric conditions. For each case, a neural

network consisting of 20 hidden layer nodes and 2 linear output nodes is trained to take

as input the 16 normalized detector counts, and output an estimate of both the x and y

centroid locations within a normalized aperture. Once the networks are trained, new sets

of data are generated for each case to compare the performance of the neural network with

the conventional centroid estimator. The standard centroid estimation technique uses the

following expressions to estimate the x and y centroid locations within a subaperture [29]:

N M

=1 zM1 Pij

yrC = 1 'j= yj (20)
EN E l Pij

where x, and y, are the x and y centroid estimates, N is the number of detectors in the

x direction, M is the number of detectors in the y direction, xij is the x-direction center

location of the ijth detector, Yij is the y-direction center location of the ijth detector, and

pij is the signal count of the ijth detector. Figures 11-16 show the results obtained for

estimating the x centroid location for the six cases. The 'x' and 'o' marks represent the

mean estimate for each x centroid location averaged over all data frames with the given

true x centroid location. The error bars represent one standard deviation about the mean.

Results for estimating the y centroid location are similar.

While both the standard centroid estimator and the neural network provide nonlin-

ear responses across the dynamic range of the detector array, the neural network clearly

provides better results than the conventional centroid estimator. The conventional centroid

estimator has a fundamental limit in that it cannot yield estimates beyond the center of
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Figure 11. Comparison of WFS lenslet centroid estimation on images with main lobe the
width of a single detector and no noise. Results shown for a) conventional
centroid estimator, and b) neural network. Marks represent mean estimate of
true centroid location, and error bars represent one standard deviation about
the mean. The MSE for the conventional centroid estimator (as compared to
the diagonal line in the figure) is 3.89 x 10-1, while the MSE for the neural
network is 1.36 x 10- 3.
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Case 2: Full Width, High SNR
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Figure 12. Comparison of WFS lenslet centroid estimation on images with main lobe the
width of a single detector and SNR between 7.5 and 11.0. Results shown for
a) conventional centroid estimator, and b) neural network. Marks represent
mean estimate of true centroid location, and error bars represent one standard
deviation about the mean. The MSE for the conventional centroid estimator
(as compared to the diagonal line in the figure) is 18.4 x 10- 3, while the MSE
for the neural network is 3.23 x 10- 3.
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Case 3: Full Width, Low SNR
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Figure 13. Comparison of WFS lenslet centroid estimation on images with main lobe the
width of a single detector and SNR between 4.0 and 7.5. Results shown for
a) conventional centroid estimator, and b) neural network. Marks represent
mean estimate of true centroid location, and error bars represent one standard
deviation about the mean. The MSE for the conventional centroid estimator
(as compared to the diagonal line in the figure) is 28.7 x 10', while the MSE
for the neural network is 5.76 x 10-3.
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Case 4: Half Width, No Noise
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Figure 14. Comparison of WFS lenslet centroid estimation on images with main lobe half
the width of a single detector and no noise. Results shown for a) conventional
centroid estimator, and b) neural network. Marks represent mean estimate of
true centroid location, and error bars represent one standard deviation about
the mean. The MSE for the conventional centroid estimator (as compared to
the diagonal line in the figure) is 2.78 x 10- 3, while the MSE for the neural
network is 1.77 x 10-3.
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Case 5: Half Width, High SNR
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Figure 15. Comparison of WFS lenslet centroid estimation on images with main lobe half
the width of a single detector and SNR between 7.5 and 11.0. Results shown
for a) conventional centroid estimator, and b) neural network. Marks represent
mean estimate of true centroid location, and error bars represent one standard
deviation about the mean. The MSE for the conventional centroid estimator
(as compared to the diagonal line in the figure) is 15.2 x 10', while the MSE
for the neural network is 3.34 x 10-3.
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Case 6: Half Width, Low SNR
0.5 1

0.4 Conventional Centroid Estimator

0.3

0
*~i 0.2-
0 

1
0.

S-0.1
-0.2

VU -1

-MSE = 24.4x1 -3

- -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Actual Centroid Location

(a)
0.5 . ....

0.4 Neural Network

0.3

0.2

3
CU 0.1

0-
0

•0 -0.1

MVSE =4.62x1 0 -

(b)

Figure 16. Comparison of WFS lenslet centroid estimation on images with main lobe half
the width of a single detector and SNR between 4.0 and 7.5. Results shown for
a) conventional centroid estimator, and b) neural network. Marks represent
mean estimate of true centroid location, and error bars represent one standard
deviation about the mean. The MSE for the conventional centroid estimator
(as compared to the diagonal line in the figure) is 24.4 x 10 -' , while the MSE
for the neural network is 4.62 x 10 - 3 .
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an edge pixel. This can be seen in the noise free cases (Fig. 11 and Fig. 14). However, the

neural network is able to give estimates outside the center of the edge pixels. This increase

in dynamic range is also apparent in the cases with noise. The neural network also dramati-

cally reduces the estimation error in all cases. The mean square error in centroid estimation

for the neural network is between 36% and 82% less than the mean square error for the

conventional centroid estimator. Finally, the neural network has a smaller deviation about

the mean for each centroid location when noise is present. Figure 17 plots the standard

deviation of the centroid estimator as a function of centroid location for the neural network

and the conventional approach (for case 2; image main lobe = width of a detector, high

SNR). In this case, the mean standard deviation for the conventional centroid estimator is

44.9 x 10- 3 while the mean standard deviation for the neural network is 38.9 x 10 - 3 . This

plot is representative of all four cases which include noise in the detectors. Figure 17 shows

that the standard deviation of the neural network is smaller than that of the conventional

centroid estimator over most centroid locations. The points for which the spot crosses

between pixels are the only locations where the conventional centroid estimator has less

standard deviation in the estimates. Overall, the neural networks provide more accurate

estimates, over a larger dynamic range, and with less estimate variance.

3.2 WFS Slope Measurement Prediction

Even if one could eliminate WFS slope measurement error from the WFS slope mea-

surements on which adaptive optics correction is based, the measured slopes will not per-

fectly match the true slopes at the time of correction due to system time delay. While

correction based on these measured slopes does yield improved image quality over no cor-

rection at all, the ability to predict the true measurements at the time of correction will

yield even better image quality. Therefore, tests are conducted in WFS slope measurement

prediction.

To test the concept of slope prediction, two tests are conducted. The first tests data

both with and without global tilt, and in fixed conditions. This test is conducted to deter-
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Figure 17. Comparison of standard deviation about the mean in WFS lenslet centroid
estimation on images with main lobe the width of a single detector and SNR
between 7.5 and 11.0.

mine if neural networks can perform prediction at all. If neural networks cannot perform

prediction under fixed seeing conditions, then they will not be able to perform prediction

when seeing conditions are varying. This test also shows how well a neural network can

approximate the optimized Bayes solution (see Eqn. (4)). The second test is conducted

under varying conditions, again on data with and without global tilt. This test represents

how well neural networks will perform prediction under real world conditions. Because

seeing conditions are continually changing, any viable prediction scheme must be able to

operate over a useful range of conditions. For this test, D/ro is allowed to vary between

5-20, WFS slope measurement error is allowed to vary between 0-25% of the wavefront

slope variance, and the x and y wind speeds of each layer are allowed to range from -0.1D

per frame. This test shows the ability of neural networks to function in more realistic

conditions and still provide benefit. Because a single frame of slope measurements contains

no information about the atmospheric wind speeds, and thus the temporal evolution of

the atmosphere, prediction based on a single frame of slope measurements is not possible

unless the wind speeds are fixed and known. Since a key issue of this research is to find
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robust solutions which operate over broad ranges of conditions, including wind speeds, a

set of slope measurements is predicted based on the previous two frames of measured slope

data in this research.

For the "fixed conditions" test, neural networks are trained to take as input the 100

slope measurements from the previous two frames, and output the 50 slope measurements

of the current frame. The value of D/ro is set at 1.0, and the four layer wind speed profile

found in Table 2 is used. The signal is set to be noise free to determine if neural network

prediction is even possible without the complications of noise. Sets of slope measurements

representing three consecutive frames of data with the proper spatial and temporal statistics

are generated to train the neural networks. Independent sets of similar data are generated to

test the neural networks and the statistical predictors. In both cases, a neural network with

80 hidden nodes and 50 linear output nodes is trained to perform prediction. Figures 18

and 19 show the results obtained from both the neural networks and the Bayes predictors.

Results show the MSE between the true current slope measurements and the predicted

slope measurements as given by Eqn. (17). Also shown in the figures are the variances

of the current true slopes (representing no correction), and the MSE between the current

true slopes and the previous frame of measured data (representing correction based solely

on the previously measured slopes). Correction based solely on the previously measured

slopes represents the residual slope MSE if correction of the current true slopes is based on

deformable mirror settings which would perfectly correct the previously measured slopes.

The MSE is plotted as a function of the index of the 50 WFS slopes (see Fig. 2). Figures 18

and 19 clearly show that predictive techniques do reduce the MSE between the true slope

measurements and those that would be used for correction if prediction is not used, and

that the neural networks do approximate the optimized Bayes solution when conditions

are fixed. In the case with global tilt, correction based on the previous frame reduces

the slope MSE by 82%, correction based on neural network prediction reduces the slope

MSE by 94%, and correction based on the optimized Bayes predictor reduces the slope

MSE by 94%. Therefore, prediction reduces the MSE of correction based on the previous
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Table 2. Four layer wind speed profile for fixed conditions prediction tests. Wind speeds
are given per frame time.

Layer x Wind Speed y Wind Speed

1 0.1D 0.OD
2 O.OD 0.1D
3 -0.1D O.OD
4 O.OD -O.1D
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Figure 18. Mean square slope error, 6?, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt. Also shown are the variances of the current
true slopes. Parameters fixed at D/ro = 1.0, no noise, and wind speed profile
fixed (see Table 2).

frame by 67%. When global tilt is removed, correction based on the previous frame reduces

the slope MSE by 53%, correction based on neural network prediction reduces the slope

MSE by 85%, and correction based on the optimized Bayes predictor reduces the slope

MSE by 86%. Therefore, prediction on data with global tilt removed reduces the MSE of

correction based on the previous frame by 68%. The structure on the results in Figs. 18

and 19 from either the neural network predictor or the optimized statistical predictor are

as expected. The best prediction is accomplished on slope elements representing center

pixels (see Fig. 2), while edge and corner pixels have larger residual errors.
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Figure 19. Mean square slope error, d, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt removed. Also shown are the variances of the
current true slopes. Parameters fixed at D/ro = 1.0, no noise, and wind speed
profile fixed (see Table 2).

For the "varying conditions" test, neural networks are again trained to take as input

the 100 slope measurements from the previous two frames, and output the 50 slope mea-

surements of the current frame. For each sequence of three frames (2 for inputs and 1 as

output) random values for D/ro, slope measurement error, and the wind speed profile are

chosen. The value of D/ro is chosen between 5-20 representing from 1 to 4 r0 's per subaper-

ture. Slope measurement error is randomly chosen in the range of 0-25% of the wavefront

slope variance. The x and y wind speeds of each of the four layers are randomly chosen be-

tween ±0.1D per frame. Sets of slope measurements representing three consecutive frames

of data with the proper spatial and temporal statistics are generated to train the neural

networks. Error is only added to the first two frames (inputs to the neural network) while

the third frame is Error free. Independent sets of data are generated to test the neural net-

works and the statistical predictors. In the case of slopes with global tilt, a neural network

with 200 hidden nodes and linear output nodes is trained to perform prediction. Figure 20

shows the MSE results. In the case of slopes where global tilt is removed, a neural network
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with 160 hidden nodes is used. Figure 21 shows the result obtained on global tilt removed

data. In both graphs, the MSE between the true current slopes and the predicted slopes is

shown. Also shown in the figures are the variances of the current true slopes (representing

no correction), and the MSE between the current true slopes and the previous frame of

measured data (representing correction based solely on the previously measured slopes).

The MSE, 6, is plotted as a function of the index, i, of the 50 WFS slopes (see Fig. 2).

Figures 20 and 21 clearly show that using a single neural network for prediction reduces the

MSE between the true slopes and those that would be used for correction, even if the seeing

conditions are allowed to vary over a broad range. In the case with global tilt, correction

based on the previous frame reduces the slope MSE by 75%, and correction based on neural

network prediction reduces the slope MSE by 79%. The results based on neural network

prediction represent a 16% decrease in MSE from correction based solely on the previous

frame. When global tilt is removed, correction based on the previous frame reduces the

slope MSE by 56%, and correction based on neural network prediction reduces the slope

MSE by 68%. For global tilt removed data, the results based on neural network prediction

represent a 27% decrease in MSE from correction based solely on the previous frame.

To understand the impact of varying seeing conditions on Bayes prediction, a test is

conducted on the global tilt removed data. The statistical predictor is set for the mean

seeing conditions (D/ro = 12.5 and noise variance set at 12.5% of signal variance), and three

tests are conducted each with set wind speeds. The wind speeds within the fixed Bayes

predictor are all set at 0.OD per frame in the first case, 0.05D in the second case, and 0.1D

in the third case, while the wind speeds of the test data are allowed to vary between ±0.1D

per frame. For each case the Bayes solution is generated, and then the entire set of test data,

covering the full range of parameters, is used to test the fixed Bayes predictor. Again, D/ro

is between 5-20, noise is from 0-25% of signal variance, and the x and y wind speeds are

chosen between ±0.1D per layer. The results of these three cases are shown in Figs. 22-24.

These graphs show that correction based on a fixed Bayes solution while seeing conditions

are allowed to vary yields significantly degraded MSE than just correcting based on the
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Figure 20. Mean square slope error, q?, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt. Also shown are the variances of the current true
slopes. Parameters varying with D/ro between 5-20, noise variance between
0-25% of slope signal variance, and x and y wind speeds between -4=0.1D per
layer.

previous frame. For the case of wind speeds set at 0.05D, correction based on the previous

frame reduces the slope MSE by 56%, and correction based on neural network prediction

reduces the slope MSE by 68%. However, correction based on the fixed statistical predictor

only reduces the slope MSE by 48%. Therefore, while prediction with the neural network

reduces the MSE versus correction based on the previous frame by 27%, prediction with

the fixed Bayes predictor increases the MSE versus correction based on the previous frame

by 18%. Because the statistical predictor relies on the structure of the slope covariance

function, and because the structure of the slope covariance function is dependent on the

wind speed chosen, we find that prediction with the Bayes predictor when the wind speeds

are not known results in a decrease in performance when compared to correction based on

the previous frame of slope measurements. Since knowing the current seeing conditions

is not always possible, this indicates that neural networks are clearly the better way to

perform prediction.
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Figure 21. Mean square slope error, 0, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt removed. Also shown are the variances of
the current true slopes. Parameters varying with D/ro between 5-20, noise
variance between 0-25% of slope signal variance, and x and y wind speeds
between ±O.1D per layer.

Another test is conducted to see if neural networks can increase the maximum wind

speed under which adaptive optics provide benefit. As was stated in Chapter II, for the

lenslet array configuration used in this research, the maximum wind speed under which

correction based solely on previous measured data improves image quality is 0.1D per

frame when global tilt is removed from the data. Therefore, a test is conducted under

varying conditions to see if prediction with a neural network can provide benefit on data

with wind speeds up to 0.2D per frame. For this test, D/ro is between 5-20, noise is

from 0-25% of signal variance, and the x and y wind speeds are chosen between ±0.2D

per layer. Figure 25 shows the results obtained. Overall, correction based on the previous

frame reduces the slope MSE by 5%, while correction based on neural network prediction

reduces the slope MSE by 43%. This plot shows that on the average, correction based on

the previous frame is no better than no correction at all when wind speeds are allowed
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Figure 22. Mean square slope error, d, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt removed. Also shown are the variances of the
current true slopes. Signal parameters varying with D/ro between 5-20, noise
variance between 0-25% of slope signal variance, and x and y wind speeds
between =0.1D per layer. Statistics based predictor fixed for D/ro = 12.5,
noise variance 12.5% of slope signal variance, and all wind speeds set at 0.OD
per frame.

to vary between ±0.2D per frame, while prediction with a neural network still improves

system performance.

A final test is conducted to understand the added benefit of using the previous three

frames as inputs to neural networks as compared to just the previous two. Training data

with global tilt is generated for D/ro = 1.0, no noise, and wind speeds limited to ±0.1D

per frame. A neural network with 80 hidden layer nodes is trained to take the previous

two frames of slope measurements as input, and to predict the current frame as output.

Another network with 80 hidden layer nodes is trained to take the previous three frames

as input, and to predict the current frame of slope measurements as output. The results of

both networks are shown in Fig. 26. Correction based on the previous frame reduces the

slope MSE by 87%, while correction based on neural network prediction with 2 frames as

inputs reduces the slope MSE by 92%, and correction based on neural network prediction
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Figure 23. Mean square slope error, f,, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt removed. Also shown are the variances of the
current true slopes. Signal parameters varying with D/ro between 5-20, noise
variance between 0-25% of slope signal variance, and x and y wind speeds
between ±0.1D per layer. Statistics based predictor fixed for D/ro = 12.5,
noise variance 12.5% of slope signal variance, and all wind speeds set at 0.05D
per frame.

with 3 frames as inputs reduces the slope MSE by 93%. Although the additional frame

of inputs to the network does improve prediction performance, the improvement is small

considering the additional processing required.

Along with system time delay, anisoplanatism, or separation between the beacon and

the object of interest, can be a major factor in adaptive optics system performance. Under

anisoplanatic conditions, errors occur in wavefront correction based on the difference in

paths. Anisoplanatism can be modeled in the slope covariance expression by substituting

+Zk(01 - 02) for -- (zk)(tl - t 2) into Eqn. (6), where 01 and 02 represent the angles between

the normal to the telescope pupil and the beacon or object of interest [18]. This substitution

yields the following expression for the covariance between any two slopes:
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Figure 24. Mean square slope error, e?, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt removed. Also shown are the variances of the
current true slopes. Signal parameters varying with D/ro between 5-20, noise
variance between 0-25% of slope signal variance, and x and y wind speeds
between ±0.1D per layer. Statistics based predictor fixed for D/ro = 12.5,
noise variance 12.5% of slope signal variance, and all wind speeds set at O.1D
per frame.

Q, (8i (O1),sj (02) E E[si (01)sj (02)

= -3.44 D f(z )
ro)k=1

(21)

where si(9) is the slope in the ith subaperture from the object at angle 0. In essence, this

substitution has added a fixed wind speed velocity at each layer between the beacon and the

object of interest. Therefore, we can draw conclusions about compensating for anisoplanatic

effects from the results of the temporal prediction tests. First, neural networks should
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Figure 25. Mean square slope error, e?, plotted as a function of WFS slope index i (see
Fig. 2) on data with global tilt removed. Also shown are the variances of the
current true slopes. Signal parameters varying with D/ro between 5-20, noise
variance between 0-25% of slope signal variance, and x and y wind speeds
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Figure 26. Mean square slope error, c?, plotted as a function of WFS slope index i (see
Fig. 2). Also shown are the variances of the current true slopes. Signal pa-
rameters of D/ro = 1.0 , no noise , and x and y wind speeds between ±0.1D
per layer.
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be able to improve performance by predicting the wavefront structure from the object of

interest based on the wavefront structure from the beacon. Also, because the "wind speeds"

are fixed due to a fixed anisoplanatic angle, a statistical predictor should be capable of

compensating for the anisoplanatic effects. Applying the anisoplanatic case to Eqn. (4)

yields

= Axb, (22)

where &, is the vector of estimated slopes associated with the object wavefront, and Xb is

the vector of measured slopes from the beacon. The matrix A is found by solving

A R-oRbo, (23)

where R,, is the covariance matrix of the object wavefront slopes, and Rbo is the covariance

matrix for the beacon and the object wavefront slopes.

Overall, we find for temporal prediction that when seeing conditions are set, a neural

network solution will approximate an optimized Bayes solution. We find that a single neu-

ral network can be trained to perform under a broad range of seeing conditions, and that a

single fixed statistical solution cannot provide benefit under those same conditions. Predic-

tion based on slope data with global tilt removed produces a larger error as a percentage

of the uncorrected signal variance than prediction based on slope data with global tilt.

However, the gain in correction between correction based solely on the previous frame and

correction based on prediction is more significant for data with global tilt removed. Finally,

we see that prediction with a neural network can allow adaptive optics to function under a

larger set of wind speeds than a system without prediction. Overall, neural networks offer

a viable solution for prediction of WFS slope measurements which helps compensate for

system time delay.
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IV. Key Parameter Estimation

While improving the accuracy of WFS slope measurements should yield significant

improvements in adaptive optics image quality, another key to improving the performance

of adaptive optics systems is in estimating key atmospheric and system parameters. These

parameters include the Fried coherence length, r0 , the atmospheric wind speed profile, the

strength of the atmospheric turbulence layers, and the WFS mean square slope estimation

error. Real time knowledge of these parameters would improve the performance of opti-

mized wavefront reconstruction algorithms. However, the ability to maintain an accurate

estimate of these parameters in real time has not been demonstrated.

4.1 Estimation of ro

One parameter of particular interest to adaptive optics is the Fried coherence length

r0 . Knowledge of this parameter is crucial to the performance of statistical based techniques

for wavefront reconstruction such as the minimum variance reconstructor [24]. Knowledge

of r0 also benefits conventional techniques for estimating other key parameters such as

WFS mean square slope measurement error, and conventional techniques for reducing the

WFS slope measurement error. Because the covariance of the WFS slope measurements

is directly related to (D/ro) 3 as seen in Eqn. (6), Page 16, the neural networks in this

research are trained to estimate the ratio (D/ro).

For comparison, a conventional method for estimating D/ro is developed. In this

conventional method the variance of the WFS measurements is estimated using a specified

number of WFS measurement frames. If the WFS measurements are corrupted by errors

due to the measurement process, the variance of the measurement error is assumed known

and subtracted from the measured signal variance. Because the variance of a single slope
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measurement is proportional to (D/ro)-d, as seen in Eqn. (6), D/ro is estimated using

Scalculated from measured data for unknown (Dr) (24)

U2(calculated from Eqn. (6) with = i.o)

where O is the variance of the WFS slopes for a given D/ro. We refer to estimating D/ro

via Eqn. (24) as the "variance based technique."

To test the concept of D/ro estimation from WFS measurements, two experiments are

conducted. The first experiment assumes noise free conditions, while the second includes

WFS error in the measurements. For both experiments, a range of D/ro is chosen. A range

of D/to = 5 to 20 is used since it corresponds to 1 to 4 r0 's per subaperture in the WFS.

A neural network consisting of 60 hidden layer nodes and a single, nonlinear sigmoid node,

is trained to take as inputs the 50 noise free WFS measurements from each frame, and

estimate (D/ro) as its output. Independent test sets of slope screens are then generated,

again using D/ro in a range of 5 to 20, to compare the performance of the neural network

to the variance based estimator. In order to test the neural network against the variance

based technique, the test sets are generated in the following manner. First, 1000 values

of D/ro are randomly selected from the range of 5 to 20. Next, M realizations of the

WFS measurements are generated for each selected value of D/ro. Then, each of the M

realizations for a particular D/ro is used to estimate D/ro via the neural network and the

covariance based estimator. The estimate of D/ro is averaged over the M values. Finally,

the mean square error (MSE) of the 1000 D/ro estimates is plotted versus M. The MSE

is calculated using

2-= 1 1- () (25)
1000 E.. kro , ro

where (D/ro)j is the known true value, (D/ro)j is the estimate,

() ME 
(26)
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Figure 27. Comparison of the neural network and variance based technique for noise free
D/ro estimation. RMS error plotted versus M, the number of frames averaged
per D/ro value. The RMS error is averaged over 1000 randomly selected values
of D/to ranging from 5-20.

and (D/ro)k is a single estimate from a single frame of WFS data. The performance results

for each method, plotted as rms error versus M, are shown in Fig. 27 for the case of zero

noise. The break even point in performance between the neural network and the variance

based estimator is around 25 frames. When estimates are based on the average of more

than 25 frames of WFS measurements, sufficient data are available for the variance based

estimator to achieve a better estimate of D/ro.

The noise free experiment shows that the neural network can provide performance

similar to that obtained using the variance based technique. However, a more realistic test

is in how each method performs in the presence of noise. A new set of training data is

generated with all the same parameters as the noise free test. However, to determine if

neural networks are flexible in the presence of noise, independent Gaussian noise, used to

model WFS slope measurement error, is added to the slopes. Because the actual WFS

mean square slope measurement error is not normally known for any frame of data, the

55



neural network must be flexible enough to operate over a range of error levels. For this

experiment, a random measurement error is added to the slopes. The variance of the error

ranges from 0-25% of the slope variance (error level 0-25%). This range corresponds to

a signal to noise ratio (SNR) of 4 and greater. Since the signal variance is dependent on

the value of D/ro (see Eqn. (6)), the actual variance of the slope measurement error is

also dependent on the D/ro selected. The actual percent error added is randomly selected

for each generated slope screen from a uniform distribution across the 0-25% range. A

neural network consisting of 140 hidden layer nodes and a single, nonlinear sigmoid node,

is again trained to estimate (D/ro). Like the noise free experiment, the net is trained

to take as input a single 50 element set of WFS data, and output an estimate of D/ro.

Independent sets of slope screens are then generated, again using D/ro in a range of 5

to 20, and WFS slope measurement error level in the range of 0-25%. Separate test sets

are generated to compare the performance of the neural network with the variance based

estimator. Like the noise free experiment, results are averaged over M frames to determine

where the performance curves of each method cross. For comparison, the performance of

the neural network is compared to three forms of the variance based method. In the first

variance based method, perfect knowledge of the variance of the slope measurement error

for each frame of test data is assumed. Therefore, the results of this method represent

the best variance based D/ro estimator. The second variance based method represents

a "level playing field" with the neural network. Since the neural network is provided no

information about the measurement error level of each frame, it is logical to test a variance

based method based on the same lack of information. Therefore, the mean square slope

measurement error used in the variance based calculation is assumed to be a single value

regardless of the true error variance. The error level is assumed to be 12.5% of the signal

variance (mean error level) for D/ro = 12.5 (mean signal level). The third variance based

method is based on using the "best guess" of the mean square slope measurement error as

determined by a neural network. In Section 4.4, we show that a neural network is able to

estimate the slope measurement error level within a MSE of 0.035rad 2/m 2 . Therefore, for
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each frame of data, the actual measurement error level is assumed known to within a MSE

of 0.035rad 2/m 2. The variance of the signal is then estimated by

signal variance = (measured variance)/(1 + estimated percent error). (27)

Once the signal variance is estimated, an estimate of D/ro is found using Eqn. (24). Results

are shown in Fig. 28. As expected, the first variance based method is the best once a

sufficient number of frames have been averaged. However, this optimized solution represents

an idealized case where perfect knowledge of the noise statistics is assumed. Once the

information available to the statistical model is reduced, as in the cases of the "level playing

field" and "best guess" solutions, we see that the performance of the neural network is

comparable if not better. The neural network is clearly better than the best guess solution.

In the case of the level playing field, performance is better or worse depending on the

situation. If we must average the estimate over small numbers of frames (20 or less), then

the neural network is the better choice. If, however, we average over more than 20 frames,

then the variance based method is the better choice.

To further investigate D/ro estimation, the above test is repeated on tilt removed

data. This test simulates an adaptive optics systems that removes the global tilt across

the pupil before processing the incident, abberated wavefront. The range of parameters is

the same (D/ro between 5 and 20, with error level of 0-25%), and the same three variance

based estimators are compared to the performance of a neural network. In this case a neural

network of 120 hidden nodes is trained to estimate D/ro. The results are shown in Fig. 29.

These results are similar those shown in Fig. 28. These results also show that all methods of

D/ro estimation performed better on global tilt removed data than on data with global tilt.

This is due to the change in the covariance matrix of the data once global tilt is removed.

When global tilt is removed, the variance of the individual elements decreases. Also, the

relative magnitude of the off diagonal elements in the covariance matrix decreases. This

reduction has the effect of making the individual slope measurements more independent
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Figure 28. Comparison of the neural network and variance based estimation of D/ro with
WFS slope measurement error present. RMS error plotted versus M, the
number of frames averaged per D/ro value. The RMS error is averaged over
1000 randomly selected values of D/ro. WFS mean square slope measurement
error is 0-25%.

from the other measurements within a frame. Therefore, each frame of data has a better

chance of being representative of the expected data statistics, and thus yields a better D/ro

estimate.

As a final test of neural networks, 256 frames of real data from the Starfire Optical

Range, Phillips Laboratory, Kirtland AFB, New Mexico are tested. The data came from

the 1.5m telescope with the WFS configuration found in Reference [5]. Four independent

sets of 5 x 5 arrays of slope measurements were extracted from each frame of data. The

Starfire Optical Range estimated that D/ro was 5.85 and noise conditions were low at the

time the data were taken. A neural network with 80 hidden nodes and a sigmoid output

node is trained on data with D/ro in the range of 2.0-9.0, and WFS slope estimation error

in the range of 0-25% of the slope signal variance. The neural network is then tested with

the real telescope data. The average D/ro estimate is 5.76, with a variance of 0.78. This
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Figure 29. Comparison of the neural network and variance based estimation of D/ro on
global tilt removed data with WFS slope measurement error present. RMS
error plotted versus M, the number of frames averaged per D/ro value. The
RMS error is averaged over 1000 randomly selected values of D/ro. WFS mean
square slope measurement error is 0-25%.

shows that techniques trained on computer generated data can operate on "real world"

data.

Overall, several conclusions can be drawn about estimating D/ro. First, the removal

of global tilt as is often done in adaptive optics systems improves the performance of

all the methods tested. Second, if timely, accurate knowledge of WFS slope estimation

error level is available, then the statistical methods will, in general, outperform the neural

network. Finally, if D/ro is believed to be changing at a relatively fast rate, the neural

network outperforms all conventional methods when the D/ro estimate is averaged over

small numbers of frames.
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4.2 Estimation of the Wind Speed Profile

Having knowledge of the wind speed profile would allow optimized wavefront recon-

struction algorithms to compensate for the system time delay. The effect of changing wind

speeds is to change the covariances between slope measurements at different times. Because

each wind speed profile yields a unique off-diagonal structure to the covariance matrix, a

statistics based wind speed profile estimator is not available. However, neural networks are

tested to see if wind speed estimation is possible. Tests are conducted on 4 layer, and 2

layer (compressed 4 layer with first layer equal to strength of layers 1 and 2 of the 4 layer

model, and the second layer equal to the strength of layers 3 and 4) atmospheric models.

Tests with 2, 4, and 6 frames of slope measurements as inputs are conducted. Only in

the most benign case of a 2 layer model, 6 frames of input, D/ro = 1.0, no WFS slope

measurement error, and wind speeds between ±0.25D per frame, are acceptable results

found. In this case, neural networks are able to estimate the lower layer (about 96% of the

overall turbulence strength) x and y wind speeds with a MSE of 0.0028D, and the upper

layer wind speeds with a MSE of 0.0056D. While these results are good, neural networks

are not able to estimate wind speeds with any degree of accuracy once D/ro is allowed to

vary, or WFS slope estimation error is added to the data. Even with an accurate estimate

of the covariance matrix which defines the temporal slope data, extraction of the wind

speed profile would not be possible. Because many wind speeds are integrated in order

to generate a single temporal slope covariance matrix (see Eqn. (6)), reversing the process

to obtain the wind speeds from the single covariance matrix will not work. Therefore, it

is determined that estimating wind speeds from the WFS slope measurements of a single

beacon is not a viable option.

4.3 Estimation of the Relative Atmospheric Layer Strengths

Knowledge of the relative atmospheric layer strengths would allow optimized wave-

front reconstruction algorithms to compensate for system time delays or anisoplanatic ef-

fects. However, just like wind speeds, the effect of changing layer strengths is to change the
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covariances between slope measurements at different times. Therefore, a statistics based

relative layer strength estimator is not available. Neural networks also fail to perform this

task with any accuracy. In the most benign case of estimates based on 6 frames of slope

measurements, fixed wind speeds, D/ro = 1.0, no WFS slope measurement error, and a

2 layer atmospheric model where the lower layer ranges from 70-100% of strength, and

the upper layer holds the remainder, estimation errors are extremely large. Again, just

like estimating the wind speed profile, the fact that many layer strengths are integrated to

generate a single temporal slope covariance matrix (see Eqn. (6)), reversing the process to

obtain the layer strengths from the single covariance matrix will not work. Therefore, it is

determined that estimating the relative atmospheric layer strengths from the WFS slope

measurements of a single beacon is not a viable option.

4.4 Estimation of WFS Mean Square Slope Estimation Error

Another key parameter is the WFS mean square slope measurement error. The

earlier results of the measurement error reduction tests in Section 3.1.1 indicate that a

Bayes solution, optimized for a single D/ro value (12.5) and a single slope measurement

error level (12.5%), is able to outperform a neural network solution. The results also

show that the closer the measurement error variance used in the Bayes solution is to the

true measurement error level, the better the performance achieved. Therefore, tests are

conducted to estimate the variance of the measurement error as a fraction (or percent) of

signal variance. Slope vectors from a 5 x 5 array of subapertures are generated to train

a neural network. D/ro is uniformly distributed over a range of 5-20, or 1 to 4 r0 's per

subaperture. The measurement error level is uniformly distributed over a range of 0-100%,

yielding a SNR 1 and greater. A neural network is trained to take as inputs 50 WFS

measurements of a single frame and estimate the ratio of measurement error variance to

signal variance. The neural network has 60 hidden layer nodes, and a sigmoid output node.

For comparison, a conventional method based on the sample based variance of the data

is used. This method is very similar to the variance based method used to estimate D/ro
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(described in Section 4.1). For this variance based method, D/ro is assumed to be known,

and thus the variance of the slope signal can be subtracted. This leaves an estimate of

measurement error variance. Since the signal variance is dependent on D/ro, and D/ro is

assumed to be known, we can then calculate the measurement error to signal variance ratio.

The neural network and variance based method are then tested with independent test data.

Test data are generated over the entire range of D/ro and measurement error levels. For

each of 1000 randomly selected D/ro and measurement error levels, M random realizations

of WFS measurements are generated. Then, the neural network and the variance based

estimator average their estimate of the measurement error level over the M realizations.

The MSE between the 1000 average estimates and their true values is measured. As in

D/ro estimation, the network is compared to three forms of the variance based method.

The first assumes perfect knowledge of D/ro and thus represents the best variance based

estimator. For the second method, the variance calculations are made assuming a nominal

value of D/ro = 12.5, thus creating a level playing field. Finally, the third method takes into

account a best guess of D/ro that could be produced using the best guess variance based

estimator described in Section 4.1. This D/ro estimator has a MSE of 1.21. Therefore, the

estimate of D/ro is allowed to vary normally about the true value with a variance of 1.21.

The results of all four methods are shown in Fig. 30.

Figure 30 shows that the optimized variance based estimator outperforms the neural

network. While the errors obtained using the network are lower than the variance based

estimator when small numbers of frames are averaged, the performance of the variance

based estimator exceeds that of the neural network at ; 20 frames of averaging. However,

the neural network does outperform both the "level playing field" and the "best guess"

variance based estimators.

Again, a neural network of 80 hidden nodes is trained to estimate measurement error

levels for global tilt removed data. Global tilt removed data is generated over the same

ranges of parameters, (D/ro between 5-20, with measurement error variance between 0-

100%). The neural networks performance is compared to all three forms of variance based
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Figure 30. Comparison of neural network and variance based estimators for WFS slope
measurement error estimation. RMS error plotted versus M, the number of
frames averaged per error level. The RMS error is averaged over 1000 randomly
selected error levels. Error level from 0-100% for D/ro between 5-20.

estimator. The results are shown in Fig. 31. Again, the first variance based method

performs best, and the neural network performs better than both the "level playing field"

and "best guess" variance based methods.

Overall, the neural network performs better than the statistics based estimator for

estimating the WFS mean square slope estimation error. While the optimized statistical

estimator performs best, it requires perfect knowledge of other key parameters which are

not always available. Also, the neural network does perform better than the optimized sta-

tistical estimator when the estimate is averaged over small numbers of frames. Finally, the

removal of global tilt improves the performance of all the slope estimation error estimators

tested.
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Figure 31. Comparison of neural network and variance based estimators for WFS slope
measurement error estimation on data with global tilt removed. RMS error
plotted versus M, the number of frames averaged per error level. The RMS
error is averaged over 1000 randomly selected error levels. Error level from
0-100% for D/ro between 5-20.

4.5 Key Parameter Estimation Summary

Overall we find that some key parameter estimation is viable. Both neural networks

and statistical estimators perform well when the parameters estimated do not affect the off-

diagonal structure of the slope covariance matrix. These parameters include D/ro, which

only scales the entire covariance matrix, and the WFS mean square slope estimation error,

which only changes the diagonal elements of the covariance matrix. For these parameters,

we find that statistical estimators perform better in estimating D/ro, while neural networks

are best at estimating the WFS slope estimation error. However, when estimates are based

on averaging over small numbers of frames, neural networks are better in both cases. For

those parameters which do affect the relative structure of the off-diagonal elements of the

slope covariance matrix, we find that estimation of the parameter from the WFS slope

measurements is not a viable option. These parameters include the wind speed profile, and
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the relative atmospheric layer strengths. Also, for those parameters which can be estimated

from the WFS slope measurements, the removal of global tilt improves the estimate.
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V. Conclusions

This research investigated the appropriateness of processing WFS slope measurements

to improve adaptive optics performance. In order to conduct this research, new atmospheric

models had to be developed which produced both slope and phase data with the proper

spatial and temporal information. Both linear (statistical) and nonlinear (artificial neural

network) methods were applied to improve the accuracy of WFS slope measurements and

to estimate key atmospheric and system parameters. This chapter summarizes the results

of the individual experiments performed throughout this research, then addresses the issues

contained in the overall research goals.

5.1 Individual Experiment Summaries

Through the course of this research, individual experiments were conducted in improv-

ing the accuracy of WFS slope measurements and key parameter estimation. Both neural

networks and statistics based methods were investigated and the results are compared to

determine which methods provided the best performance. Experiments in improving the

accuracy of WFS slope measurements included reducing the WFS mean square slope esti-

mation error, both through the processing of a single frame of WFS slope measurements

and improving the centroid estimation within a single WFS subaperture, and compensating

for system time delay through temporal slope prediction. Experiments in key parameter

estimation included estimating r0 , the atmospheric wind speed profile, the strengths of the

atmospheric turbulence layers, and estimating the WFS mean square slope measurement

error. These experiments are significant because they had not been previously investigated,

and thus represent new work. Because adaptive optics correction is based on the measured

slope signals, any effort which makes them more accurately match the true slope signals at

the time of correction would improve the performance of the adaptive optics systems. The

ability to maintain timely, accurate estimates of the key parameters would enable wavefront
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reconstruction algorithms to operate in a more "optimal" fashion. Brief summaries of each

of the experiments follow.

5.1.1 Reducing WFS Mean Square Slope Estimation Error Through Processing a

Frame of WFS Slope Measurements. In the experiments which reduce the WFS mean

square slope estimation error through the processing of an entire frame of WFS slope mea-

surements, we find that both the neural network and the statistical solution perform well

in both fixed seeing conditions, and when seeing conditions are allowed to vary. However,

as long as a reasonable estimate of the system mean square slope measurement error exists,

the statistical solution is the better choice. Also, it is shown that a neural network will

approximate the optimized statistical solution when seeing conditions are fixed.

5.1.2 Reducing WFS Mean Square Slope Estimation Error Through Improving the

Centroid Estimation Within a Single WFS Subaperture. In the experiments which reduce

the slope measurement error within a single WFS subaperture, the neural network is clearly

the better than the standard centroid estimator. While both methods show a nonlinear

response in estimation, the neural networks provide more accurate estimates, over a larger

dynamic range, and with less estimate variance.

5.1.3 Compensating for System Time Delay. In the experiments in improving

WFS slope measurements accuracy through temporal slope prediction, we find that when

seeing conditions are set, a neural network solution will approximate an optimized statis-

tical solution. We find that a single neural network can be trained to perform under a

broad range of seeing conditions, and that a single fixed statistical solution cannot provide

benefit under those same conditions. Also, we see that prediction with a neural network

can allow adaptive optics to function under a larger set of wind speeds than a system

without prediction. We also find that temporal prediction can be applied to the problem

of anisoplanatism, and we expect similar results in performance. Overall, neural networks
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offer a viable solution for prediction of WFS slope measurements which helps compensate

for system time delay.

5.1.4 Estimating ro. In the experiments in estimating r0 from the WFS slope

measurements, we find that both neural networks and statistical estimators can be used. If

timely, accurate knowledge of WFS slope estimation error level is available, then the sta-

tistical methods will, in general, outperform the neural network. However, if r0 is believed

to be changing at a relatively fast rate, the neural network outperforms all conventional

methods when the r0 estimate is averaged over small numbers of frames.

5.1.5 Estimating the Wind Speed Profile. In the experiments in estimating r0 from

the WFS slope measurements, we find that neural networks are not able to estimate wind

speeds with any degree of accuracy once D/ro is allowed to vary, or WFS slope estimation

error is added to the data. Overall, it is determined that estimating wind speeds from the

WFS slope measurements of a single beacon is not a viable option.

5.1.6 Estimating the Strengths of the Atmospheric Turbulence Layers. In the

experiments in estimating r0 from the WFS slope measurements, we find that estimating

the relative atmospheric layer strengths from the WFS slope measurements of a single

beacon is not a viable option.

5.1.7 Estimating the WFS Mean Square Slope Estimation Error. Finally, in the

experiments in estimating the WFS mean square slope estimation error from the WFS

slope measurements, we find that the neural network performs better than the statistics

based estimator for estimating the WFS mean square slope estimation error. While the

optimized statistical estimator performs best, it requires perfect knowledge of other key

parameters which are not always available. Also, the neural network does perform better

than the optimized statistical estimator when the estimate is averaged over small numbers

of frames.
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5.2 Conclusions on Overall Research Goals

While the individual experiments in improving the accuracy of WFS slope measure-

ments and key parameter estimation represent new work in the adaptive optics field with

significant results, they also yield some broad conclusions about processing WFS slope mea-

surements to improve adaptive optics performance. These conclusions should help direct

and limit the scope of future efforts dealing with the processing of WFS slope measure-

ments. Conclusions are drawn from the experiments on the following key issues:

1. What kinds of useful information can be extracted from the WFS slope measure-

ments?

2. Which methods work best (statistical models or artificial neural networks)?

3. Can methods be developed which operate over useful ranges of seeing conditions?

The first issue deals with what can we reasonably expect to extract from the WFS

slope measurements. As was stated earlier, many factors effect the statistics which ul-

timately govern the atmospheric abberations and the limits on adaptive optics system

performance. These factors include r0 , the wind speed profile, and the strengths of the

atmospheric turbulence layers. Also, the WFS mean square slope estimation effects the

statistics of the measured slope signals. All these parameters effect the statistics of the

measured slope signals by either changing the diagonal structure of the slope covariance

matrix, by changing the off-diagonal structure of the slope covariance matrix, or by merely

scaling the entire slope covariance matrix. How a particular parameter effects the slope

covariance matrix plays a big role in our ability to accurately estimate that parameter from

the measured slope signals.

Clearly all the experiments in improving the accuracy of WFS slope measurements,

along with the experiments in estimating the key parameters of r0 and the WFS mean

square slope estimation error were successful. These successes, along with the failures

in estimating the atmospheric wind speed profile and the strength of the atmospheric

turbulence layers yield significant insight into what kinds of processing of WFS slope signals
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will be successful. In the area of improving the accuracy of WFS slope measurements

through the processing of the slope measurements (as in reducing the WFS mean square

slope estimation error and temporal slope prediction), if a statistical method can be found

which minimizes the mean square error when seeing conditions are fixed, then the task

should be able to be accomplished when seeing conditions are variable. However, the

variable seeing conditions solution will not perform as well as an optimized solution. In

the area of parameter estimation, we find that parameters which affect only the diagonal

of the slope covariance matrix, or merely scale the entire slope covariance matrix can be

accurately estimated. However, those parameters which change the off-diagonal structure

of the slope covariance matrix, and thus information about those parameters is deeply

embedded in the covariance statistics, are not easily estimated.

The second issue deals with choosing the proper method for extracting information

from WFS slope measurements. This research compares the performance of statistics based

methods with artificial neural networks. First we find that neural networks can approximate

optimized statistical solutions when seeing conditions are fixed. This was shown in the

experiments to reduce the WFS mean square slope estimation error through the processing

of a single frame of slope measurements, and in the slope temporal prediction experiments.

While the ability of neural networks to approximate optimized statistical methods had

been proven in theory, it had not, before this research, been shown in application for

non-classification problems. Next, we find that while both neural networks and statistical

methods can function under variable seeing conditions, the neural networks tend to be

more robust than the statistical methods. For statistical solutions, the more variables

that effect the overall statistical solution, the less robust it becomes. However, the neural

networks seem to maintain their robustness even when many variables govern the data.

We also find that the neural network solutions are able to give good estimates of key

parameters without having to average the estimate over many frames of slope data. The

statistical estimators, however, only function well when the estimate can be averaged over

large numbers of slope frames. Also, we see from the parameter estimation tests and the
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test in reducing WFS measurement error within a single subaperture that neural networks

operate much better than statistical solutions in the presence of noise when only a single

frame of data is processed. This ability to operate in noisy conditions can be critical to

system performance. Finally, we find that the removal of global tilt from the slope signal

helps both the statistics based solutions and the neural networks in most cases. The only

experiment where performance was not improved involved the reducing of the WFS slope

estimation error through the processing of a single frame of slope measurements. Because

tilt removal makes the individual slope measurements within a frame more independent,

valuable information used in error reduction is lost when global tilt is removed. However,

the impact of tilt removal on WFS slope measurement error reduction was small.

The final issue deals with developing flexible solution to improving adaptive optics

performance. Because seeing conditions rarely remain fixed for any significant period of

time, viable solutions for improving adaptive optics performance must be able to operate

over wide ranges of seeing conditions. The experiments in this research indicate that viable

solutions can be developed that operate over broad ranges of seeing conditions. While

being developed to operate under variable seeing conditions, these solutions still provide

significant performance in improving the accuracy of WFS slope measurements and in

estimating key atmospheric and system parameters.

Overall, we find that the WFS slope measurements do contain useful information that

can be extracted through various techniques. Simple transformations (either by neural net-

work or statistical solution) on slope measurements can yield significant improvements is

system accuracy without major changes to the adaptive optics system. In the areas of

WFS measurement error reduction, temporal slope prediction, and parameter estimation,

significant performance increases can be realized either directly through processing of the

WFS slope measurements, or by using parameter estimates from the WFS slope measure-

ments to increase the performance of wavefront reconstruction algorithms. Also, we find

that both neural networks and statistical methods perform well when seeing conditions are
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fixed, however neural networks are much more robust when operating under variable seeing

conditions than are the statistical solutions.
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Appendix A. Development of Slope Covariance

This appendix provides a detailed development of the governing equation of the space-

time slope screen covariance matrix. All of this work begins with the following equation

developed by Ellerbroek [3]:

E[uiuj] = 0.00969 27rdxd vi(x-)vj(x

N

x ]dTd 2wjriWi(T2 )
j=1

x {JdX j2LN e( j2 -k( 2))e(-j27(T1T,2)k-gz)) +( 8

where ui and uj are either wavefront slopes or phases. For piston removed data

Wk(() = - T) (29)

Vk(9) = fW(Y) [6(X- - - 1] for phase measurements (30)
( w() for slope measurements

where tk is the time of measurement Uk, W(Y) is the aperture function, ij is the position in

the aperture of phase measurement Uk, and wf(g) designates the gradient of the ith WFS

subaperture weighting function. Starting with Eqn. (28), the following expression for the

covariance, Cs, between any two slope measurements si(t1 ) and Sj(t 2 ) at times ti and t 2

can be written:
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CI(i~t),j~t))= E[Si(tl)Sj(t 2)]

0.00969 () ~d -w()w(-)

N
" ]]dTdT2 6(rl - tl)6(r 2 -t 2 ) S:C2(Z)A

j=1

" {Jdk I k- I-3 e( -j27r fl-e))e(-i2-I(-1-72)kiiVzj)) + C}

(31)

Letig = kj,/3=27r (i-i+( 1 -t 2 )ii(zj)), and integrating over both T, and T2

yields

C (S(t), Sj(t 2)) = 0.00969 (jA ) fj X X2 C X1 2 j=

x {Jdkk- e(3jk~) + C} (32)

However,

k 3 k/3cosO, (33)

where / 13 and

dk =kdkdO. (34)

Substitution yields

2 N
C 8 ( s i(t 1 ) , 8 j ( t 2 ) ) = 0 .0 0 9 6 9 ( A~ - fJ d r d f w i ii X 2 , X5X =

{ JdO Jdkk~e(k3csO) + c}

(35)
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Using the following relationship

e-jacs(O-O)dO - 27rJo(a), 
(36)

yields

2 fdN
C 8(si(tl), sj(t 2)) = (27r)(0.00969) 2r -dxdw(x)w. (rE) E C2(zj)Az

j=i

x {Jdkk-Jo(k3) + c}.

(37)

Now, any value can be chosen for c as long as it is independent of position '. Therefore,

choose c = -k-3. Then

C 8 (si(tl), sj(t2 )) = -(2.)(0.00969) (27r Jd-dx-w (i)wj(z) E C2(zj)Az
A X1 2 , (1 X2j=1

x Jdk [1 - Jo(k3)] k-.

(38)

Multiplying the equation by ( ) yields

Cs(si(t ),Sj(t 2)) = -(2,r)(0.00969) (dw) d- w" ()

j=1

x Jdk3 [1 - Jo(kO)] (kO) - . (39)

Using the identity

[i -Jo(x)]x-Pdx = { 2PF2(P- 1 )sin [r(P; 1)} (40)
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when

1< p <3, (41)

yields

Cs(si(t1),sj(t2 )) -(27r)(0.00969) xd Jd d xIw(x)w() EC(zj)Az
j=1

X3 7r j23F2( 6) sin 6 1  (42)

Cs(si(t1),sj(t2)) = -(0.068) Jr d wid 1)Wj( C2) (ZJ)AZp'

j=1

(43)

Substituting back in for/3 yields

(27) 2 N
CS(si(tl),Sj(t2 )) -(0.068) Z C2(zj)A z

j=1

x J 2dxvw(i)w.(x)(2i I -X + (tl - t2)i(z,) ) .

(44)

Finally, substituting

C2(zj)Az= 6.88 r 3(zj)-, (45)
2.91 (2)2

normalizing the aperture by its dimension 1, and letting
5f (Z--( r(46

f~z1) =ro (zj))(6

where f(zj) equals the fraction of all turbulence in the jth layer at altitude zj yields
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C8,(Si(tl), sj(t 2)) =E [Si(tl)Sj(t2)]

= 3.44 (D)3 E f (zk)
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Appendix B. Development of Phase Covariance

This appendix provides a detailed development of the governing equation of the space-

time phase screen covariance matrix. All of this work begins with Eqn. (28) developed by

Ellerbroek [3]. Starting with Eqn. (28), the following expression for the covariance, Cp,

between any two phase measurements ¢(xI, ti) and 0(42, t 2) at locations x- and X2 and

times tj and t2 can be written:

Cp(ij,t 1 ,X2,t 2 ) = E[¢(ij,t1)¢(i,t2)] (48)

= 0.00969 (27) JJdfd

[6 ) - f()f(x)] w( [(&- x) - f( (x

N

x ] d-d 2 6(r - tl)6(-r2 - t2)1) C,2(zj)Az
j=1

x {Jdk , I ,- e(-j2,k'(7- )e(-2,'rl-'r2)k'(zj))- c}, (49)

where W(a) is the aperture function, C2(zj) is the structure constant of the jth layer at

altitude zj, V(zj) is the velocity of the jth layer at altitude zj, and for piston removal

f(9) = 1. Substitution for f(Y) and integration over both -r and T2 yields

Cp(xj,t1,X2,t2) =0.00969 _- 2 d

N
XW(#) [6(,- ) - 1] W(6) [6 6- ( ) - i] ZC,(zj)AZ

j=1

X {Jd I k ]- e(-j2-[k'( -&+(tj-t 2)(zj))]) + c}. (50)

Since we are not interested in time sequenced phase screens, the time dependence and layer

dependence can be removed. Also,

- k II ICos 0 (51)
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when

dk =1 kIdl kId. (52)

Substitution of Eqns. (51) and (52) into Eqn. (50) yields

CO9())=0.009 2 2 dd

xJdO Jd Ik 11 k 1 e(3~tI~cs] + (53)

where C2 is the effective structure constant for the entire atmosphere. Using the following

relationship

e-jacs(O-O)dO = 27rJO(a), (54)

yields

CP(xI, i) = (21)(0.00969) d 2

XW(#) [6(r- j) - 1]W( [5(&- i) - ] C2

x {fdkI k -A o(27rIk n- 1+c}. (55)

Now, any value can be chosen for c as long as it is independent of position X. Therefore,

choose c = - 1 i. Then

X1 = -(27r)(0.00969) J )fd4&

xW(#) [6(4- j) - 1] W( [5(&-x)- i]

x fd Ik- [1 - Jo(27 I k-l - 1)] 1 k- 1 (56)

To keep things simple, let

/3=21rj-I, (57)

79



and multiply the equation by (2)3 . Then

CvQx,i) -(27)(0.00969) 2 2Jffdd

xW(#) 16(- )- 1] WO~ [ X2 ) ]O

x×jd I k- I 1 Jo(I k- 10)] (1 1 - . (58)

Using the identity

1 - Ja(x)]x-dx = 7r {p 2 (P +)sin [w(P 1 (59)

when

1 < p < 3, (60)

yields

OP(XI,X-) =-(27r)(0.00969) (Ai ~?d

xW() [6(4- xi) - 1] W(O [6((- i) - 1] CX
3 r (11) [7r5 ] -

X×/7r {2F2 6 sin , (61)

=-(0.068) J A df d
xW(7) [(7- ij) - 1] W(C0 [( -x)- i] C /3 , (62)

M ( - ) - -WO X
-(0.068) 272C2Jdd6W(W ()3
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CP(X-, = -(0.068) ( 2 c2

f dd((-W()6(( - X2

- f ~ w W( (- X-1)

- fdd(W(n- W( )304(6Q- -)

+ fJd #d W )W(/3 ] (64)

Substituting back in for 0 yields

Cp(x,4) -(0.068) c.

×J dW(Y)W(3 (2 I I )(-4

-J d W(7)( (2 I - ) *

+JdfdW(-)W( - (2 r I if-&[) ]. (65)

Taking advantage of integration over S functions yields

Cp~ , = -(0.068) ( Ci2

xJd[w(iDw( (2 I x -i )

- fdifW7()Wx ) (2 I- XI

+Jdd6( ¢)W()W (27r I - ) ]. (66)
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Finally, substituting

C2 6.88 (67)2.91 (,,) 2r ,(7

and normalizing the aperture by its dimension L such that the aperture functions, W(d),

range from -1 to 1, yields

C~(iii) =-3.44

× [w(mw(O (I X - A )3

- d-W i)W(f) (I - 1)3

±JJddOW( )W ( 0- , 1 (68)
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Appendix C. Phase covariance calculation: Gegenbauer polynomial

technique

We begin with Eq. (13), the final form of the phase covariance for the Kolmogorov

power specturm.

(LNCp(xj,tl,Xf2,t2) --- 3.44 E f (zi)

.1) =1

[W(117W(r) (I - ± (t - t(zj) i-

+JddW () W( (i~-~ t ~Zj) N)~* (9

-~ ~ ~~~X fa ()( Ix + (tl1- t2)v(z))
/d -)(W() (Ii- + (tI - t2) (zj)i)

+ ffdo-dOW( )W(O) (10 - 0+ (tl - 2)-(zj),)] (69)

The Gegenbauer polynomial technique requires a circular aperature of unit radius [231,

which we already have. Therefore, substituting in the Gegenbauer polynomial functions

yields

c,(ii, t 1), t2 ) =-344 0 E f(z){j) I - +(tI -t2)(
ro j=1

- F1 (-ij + (tl - t2)V(Zj))

- F1 (X + (t - t 2 )V(Zj))

+ F 2 ((tl - t2) v(zj))} (70)

where
l -- -- 1 [2 )  Q1i_<

F, (() 1 ; 6 (71)
laI513 

2F1(:, -; 2;1I1 -2) I > 1
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2F,(, b;c; z 1- (c) 17(a + n)P(b + n) Zn 72
2F1ab; ; ) (a)F(b) r(c + n) n! (2

and

K, IoK(p H (-6) d- (73)

0 otherwise

{p I p11/ 3  :-,=
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Appendix D. Development of the Lenslet SNR Ratio

This section provides a detailed development of the governing equation for the SNR

within a single lenslet. The assumptions are that the detector array is an N x N array

of detectors, the detectors are centered about the origin, and that the photon arrival rate

function is symmetric and centered at the origin. We begin with the standard equation for

a linear estimation of the x-coordinate of the image centroid:

i=1-I Z 1  x(pj + n (76)
= z:i~j + n(7)

where c. is the x-coordinate of the image centroid, xi is the x-coordinate of the center of

the ith column of detectors, Pij is the signal count in the ijth detector, and nij is the noise

in the ijth detector. We assume that Pij is independent of Pi'j' when i $ i' and j = j', and

that Pij is independent of ni,t,. The photon count, pit is a Poisson random variable with

E[pi] = Aij where Aij is the photon arrival rate in the ijth detector. The read noise, nij is

a zero mean Gaussian random process with standard deviation cre. We assume that

N N

ZZ (p, + nt) = K, (77)
i=l j=l

where K is the total average arrival rate of photons within the entire lenslet. Also, if we

assume that Air is even symmetric, as is the case of a diffraction limited image, then

E] JE E - 1 xiE[ij] EN1 EN_- xi/ij
E[c']K K = . (78)

In order to find an expression for the SNR, we must first solve for E[cx]. Therefore,

jE[= it= ,1 xixi,(pij + rj)(pj'j' + nu ,,)][C2] = K- , (79)
X K 2

E NJ jN 1~- EN 1 N1xixi' (E~pj~uy] + E[njnui~j]) (0K 2  
(80)
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Let xi = d j where d is the width of a detector element, and &j is the normalized x-

coordinate of the center of the ith column of detectors. Then,

E d2Ei,=N J 1 . .j (E~pijpcj,] +j= ii E[nijni,j,]) (1

E[cx] - '2  j=j= ( ] (81)

E &2E 3 EE- j~ ~ N N i] 2 N N2 3

2 j=1 =1 i=1 j=1

d2N N+ : E i? ^17 (82)
i=1 j=1

Applying Eqn. (78) to the second term of Eqn. (82) yields

d2N N d2 gN2Ec: E &? (E[pij] - E 2 ij]) + -N Y NZ °' (83)

----=1 j=K i=1

Also, since Pij is a Poisson process,

E[p?.] - E2 [pij = Aij. (84)

Substituting yields,

72 N N d2 N2. N

E[cx] - K 2 N N Aij + d N 2  (85)
i.=1 j=l k ---1

2 N N iv o72 N &2d &i + KEN 1  (86)K = j=l i K 1

Now, because the x and y center locations are independent, we can write

E[c2] d E[c]=- 2 E E & 3 + 2N e E (87)
8=1 j=1 g i=1N
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We define the subaperture SNR

SNR = E[4] + 1 ' (88)
'Ic~ + E~c

Therefore, the expression for SNR can be written as

SNR = K (89)
d V2K zN1 z; 1  + 7 ± 2N20,2 EN

In this research, our detector array is assumed to be of unit dimension, ranging from

_1 to } in both the x and y directions (therefore d = 0.25). With this setup, and assuming

a diffraction limited image within the lenslet, we find the expression for SNR becomes

SNR = K + 2.5' (90)

0O.0346K + 2. 5-'

when the main lobe of the image is half the width of a detector, and

SNR = K + (91)
0O.0378K + 2.5o'

when the main lobe of the image is the full width of a detector.
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